
Lambert W function in the stability and bifurcation analysis of homographic Ricker
maps

J. Leonel Rocha∗ and Abdel-Kaddous Taha∗∗
∗CEAUL. ADM, ISEL-Engineering Superior Institute of Lisbon, Polytechnic Institute of Lisbon, Portugal

∗∗INSA, Federal University of Toulouse Midi-Pyrénées, Toulouse, France

Abstract. Dynamical systems of the type homographic Ricker maps are considered, which are particular cases of a
new extended γ-Ricker population model: a discrete-time population model whose dynamics of the population xn, after
n generations, with n ∈ N, can be defined by the difference equation xn+1 = b(xn) x

γ−1
n s(xn), and written in the

following form,

xn+1 = r
xγ
n

β + xn

e−δxn (1)

where γ is the cooperation or Allee’s effect parameter. The per-capita birth or growth function b(xn) = cxn

β+xn

is a

Holling’s type II functional form or rectangular hyperbola, where c > 0 measures the maximal reproduction or growth
rate and the ratio c/β measures the relative growth rate as the population size is smaller. The survival function for
generation n or the intraspecific competition is given by s(xn) = eµ−δxn , where µ > 0 is the density-independent death
rate, δ > 0 is the carrying capacity parameter, with r = ceµ, γ and β real parameters.
The purpose of this talk is to investigate the nonlinear dynamics properties of the homographic Ricker maps, denoted
by f(x; r, δ, β), for some particular cases of the γ parameter. Then we study the fixed points of these homographic
maps as analytical solutions of Lambert W functions. Using general properties of Lambert W functions, we establish
conditions for the existence, nature and stability of the non-zero fixed points. Throughout this work, we will show how
the use of Lambert W functions are useful to formalize analytical results and to represent bifurcation curves. Fold and flip
bifurcation structures of the homographic Ricker maps are investigated, in which there are flip codimension-2 bifurcation
points and cusp points, while some parameters evolve. Some communication areas and big bang bifurcation curves are
also detected, see Fig.1. Several numerical simulations illustrate the theoretical results established.
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Figure 1: Bifurcation curves of the homographic Ricker map f(x; r, δ, β) in the ∆β,r parameter plane at δ = 2: kΛj

(n)0
are the fold

bifurcation curves of the cycles of order n = 1, 2, 3, 4, 5, where k denotes the quadrant and j is the differentiation between curves of the

same cycle; kΛj
n are the flip bifurcation curves of the cycles of order n = 1, 2, 3, 4, 5, 6, 8; 2C2 = Λ1

1∩
2Λ(2)0 is a flip codimension–2

bifurcation point; 2C3, 2C4 and 2C5 are the cusp points related to the cycles of order n = 3, 4, 5, respectively; PBB ∈ Λ̃ is a big bang
bifurcation point.
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