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The conference aims to regroup African researchers working in the field of dynamical

systems in a broad sense. This includes a wide range of research directions, Stability of

ordinary differential, discrete dynamical systems, chaos, bifurcations, topological and sym-

bolic dynamics and their applications that are at least as rich and diverse.

The academic program of the conference will consist of invited talks and paper pre-

sentations. Two sessions are planned, the first one for Ordinary Differential Equations

and Continuous Dynamical Systems (ODE/CDS) and the second for Discrete Dynamical

systems (DDS).

The organizers hope that ACDSODE will become a regular event in the continent and

will help to create links between African mathematicians working in this exciting field.

Due to the Covid 19 pandemic this edition will be held online.

Plenary Speakers

Pr. El Hadi Ait Dads, Cadi Ayyad University, Morocco.

Pr. Svetlin Georgiev, Sofia University, Bulgaria.

Pr. Jarkko Kari , Turku University, Finland.

Pr. Mohsen Miraoui, IPEI Kairouan, Tunisia.

Pr. J. Leonel Rocha Instituto Politécnico de Lisboa, Portugal.

Pr. Karim Yadi, Tlemcen University, Algeria.

Dr. Maryam Hosseini, IMPAM Isphahan, Iran.

Conference Topics

Two sessions are planned:

Session 1 : Ordinary differential equations and continuous dynamical systems.

Session 2 : Discrete dynamical systems.
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Scientific committee

Pr. Nourredine Akroune

Pr. Ahmed Berboucha

Pr. Karima Mebarki

Dr. Fatiha Boulahia

Dr. Nadia Mohdeb

Organizing committee

Pr. Ahmed Berboucha

Dr. Leila Baiche

Dr. Mohand Bouraine

Dr. Rezki Chemlal

Dr. Hacene Gharout
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African Conference on Dynamical Systems
and Ordinary Differential Equations

ACDSODE 21 March 20-23 2021

Bejaia University, Algeria

Program
Session 1 : ODE / Continous dynamical systems

Session 2 : Discrete dynamical systems.

Saturday 20/03/2021

Session ODE/ CDS: Chairman N. Mohdeb

09h00-09h30: Opening

09h30-10h30: Yadi Karim. University of Tlemcen, Algeria.

”Sur les modèles de prédation avec taux de disparition non constant.”

10h30-11h00: Tinhinane Meziani. University of Bejaia, Algeria.

” Etude de la dynamique d’un modèle biomathématique régi par un système d’équations

différentielles ordinaires. ”

11h00-11h30: Houdeifa Melki. University of BadjiMokhtar Annaba, Algeria.

”Limit cycles for a class of generalized kukles differential systems. ”

11h30-12h00: Abdessalem Benterki. University of Medea, Algeria.

”Study the seiqrdp model of covid-19 in Algeria. ”

Break

Session ODE/ CDS : Chairman K.Mebarki

13h30-14h30: Svetlin Georgiev. Sofia university, Bulgaria.

” Applications of the Fixed point Theory.”

14h30-15h00: Zouaoui Bekri University of Oran 1, Algeria.

”Existence of solution for a third-order boundary value problem. ”

Break
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15h30-16h00: Ghendir Aoun Abdellatif. Faculty of Exact Sciences, Hamma

Lakhdar University, Algeria.

”Nonlocal Integro-Differential Boundary Value Problem for Fractional Differential Equa-

tion on An Interval Infinite. ”

16h00-16h30: Safa Chouaf. University of 20 August 1955 Skikda, Algeria.

”New Results on positive bounded solutions of a second-order iterative functional differ-

ential equation. ”

16h30-17h00: Rabah Belbaki. ENS Kouba, Algiers, Algeria.

”On the monotone generalized non expansive mapping in Banach spaces. ”

17h00-17h30: Ibtissem Merzoug. University Badji Mokhter Annaba, Algeria.

”Existence of solutions for a nonlinear fractional p-Laplacian boundary value problem. ”

17h30-18h00: Moussa Haoues. Souk-Ahras University , Algeria.

”Existence and uniqueness of solutions for the nonlinear fractional differential equations

with nonlocal conditions. ”

Sunday 21/03 /2021

Session DDS : Chairman N.Akroune
09h00-10h00: J. Leonel Rocha. Polytechnic Institute of Lisbon, Portugal.

”Lambert W function in the stability and bifurcation analysis of homographic Ricker

maps.”

10h00-10h30: Faiza Zaamoune. University Mohamed Khider, Biskra, Algeria.

” Discovering Hidden Bifurcation in Chua system Via Transformation. ”

10h30-11h00: Nouressadat Touafek. Mohamed Seddik Ben Yahia University,

Jijel, Algeria.

” On the behavior of the solutions of a system of difference equations of second order

defined by homogeneous functions. ”

11h00-11h30: Hacene Gharout. University of Bejaia, Algeria.

” Evolution of a three-dimensional endomorphism towards hyper chaos ”

11h30-12h00: Bououden Rabah. Abdelhafid Boussouf University Center, Mila,

Algeria. ” Chaos in the Fractional Lozi Map. ”

Break
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13h30-14h00: Nouar Chorfi. University of Tebessa, Algeria.

”Stability analysis and an optimal control applied to the spread of HIV/AIDS model.”

14h00-14h30: Yahiaoui Yaniss. University of Bejaia, Algeria.

” Sur les bifurcations d’un certain système dynamique discret. ”

Break

Session ODE/CDS: Chairman A. Berboucha

15h00-15h30: Nasri Akila. University of Bejaia, Algeria.

” La reduction de R : Smith et application”.

16h00-16h30: Kamel Ali Khelil. University of 8 May 1945 Guelma, Algeria.

”On the stability of certain nonlinear delay dynamic equations. ”

16h30-17h00: Samir Cherief. University Abdelhamid Ibn Badis of Mostaganem,

Algeria.

”Growth of solutions of a class of linear differential equations near a singular point. ”

17h00-17h30: Bouharket Benaissa. University of Tiaret, Algeria.

”New proof of Hardy dynamic Integral Inequality on Time Scales. ”

17h30-18h00: Amira Ayari. University of Badji Mokhtar Annaba, Algeria.

”Sufficient conditions for exponential stability of some nonlinearperturbed system on time

scales.”

Monday 22/03/2021

Session ODE/CDS : Chairman F. Boulahia

09h00-10h00: El Hadi Ait Dads. University Cadi Ayyad, MOROCCO.

”Discrete Pseudo Almost Periodic Solutions for Some Difference Equations. ”

10h00-10h30: Mesbah Chebbab. University of Tizi Ouzou, Algeria.

”Pseudo almost periodic solution for the Nicholson Blowflies model with Stepanov pseudo

almost periodic coefficients. ”

10h30-11h00: Mohamed Abdelhak Kara. University Abdelhamid Ibn Badis

of Mostaganem, Algeria.

”Fast growing and fixed points of solutions of complex linear differential equations. ”

11h00-11h30: Fayal Bouchelaghem. University 8 Mai 1945 of Guelma, Alge-

5



ACDSOD 21 Bejaia, March 20-23 2021

ria.

”Existence of positive solutions for dynamic equations on time scales. ”

11h30-12h00: Benadouane Sabah. University of Bordj Bou Arreridj, Algeria.

”Explicit non-algebraic limit cycle of a family of polynomial differential systems of degree

even. ”

Break

13h30-14h30: Mohsen Miraoui. University of Kairouan, Tunisia.

”On the integro-differential equations with reflection. ”

14h30-15h00: Omar Benniche. Djilali Bounaama University, Ain Defla, Alge-

ria.

” Null–controllability for systems governed by fully nonlinear differential equations. ”

Break

15h30-16h00: Rebiha Benterki. Bordj Bou Arréridj University, Algeria.

” Limit cycles of a family of discontinuous piecewise linear differential systems separated

by conics. ”

16h00-16h30: Rachid Boukoucha. University of Bejaia, Algeria.

”Algebraic and non-algebraic limit cycles of a family of planar differential systems.”

16h30-17h00: Saad Eddine Hamizi. University of Bejaia, Algeria.

”A class of planar differential systems with explicit expression for two limit cycles.”

17h00-17h30: Mouna Yahiaoui. University of Bejaia, Algeria.

”Invariant algebraic curves and the first integral of a class of Kolmogorov systems.”

17h30-18h00: Ahlam Belfar. Bordj Bou Arréridj University, Algeria.

”Global Phase Portraits of some Quadratic systems having reducible invariant curve.”

Tuesday 23/03/2021

Session DDS : Chairman R.Chemlal
09h00-10h00: Jarkko Kari. Turku University, Finland.

”Decidability in Group Cellular Automata.”

10h00-10h30: Rezki Chemlal. University of Bejaia , Algeria.

”Periodicity and factors of endomorphisms of the shift.”
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10h30-11h00: Saliha Djenaoui. University of 8 May 1945, Algeria.

”Overview of the generic limit set.”

11h30-12h00: Tarek Sellami. University of Sfax, Tunisia.

”Common dynamics of Rauzy fractals with the same incidence matrix.”

Break

13h30-14h30: Maryam Hosseini. Institute for Research in Fundamental Sci-

ences (IPM), Iran.

”Topological rank of cantor factors of cantor minimal systems. ”

14h30-15h00: Aymen Hadj Salem. Higher Institute of Management of Gabés,

Tunisia.

”On recurrence in dendrite flows.”

Break

15h30-16h00: Mohammed Salah Abd Elouahab. Center Abdelhafid

Boussouf, Mila, Algeria.

”On some stability conditions for fractional-order dynamical systems of order alpha in

[0, 2) and their applications to some population dynamic models.”

16h00-16h30: Hamdi Brahim. University of Mostaganem, Algeria.

”Etude d’un problème à conditions aux limites non locales généralisées de type Bitsadze-

Samarskii dans les espaces Lp. ”

16h30-17h00: Karima Ait-Mahiout. Higher Normal School, Algeria.

”Solutions multiples pour un problème aux limites poste sur la demi-droite réelle par la

théorie de Morse. ”

17h00-17h30: Smäıl Kaouache. Centre universitaire de Mila, Algeria.

”Chaos and mixed combination synchronization of three identical fractional hyperchaotic

systems with different fractional-order. ”

17h30 Closing
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Conferences

Plenary Speakers :

1. Pr. El Hadi Ait Dads. Cadi Ayyad University, Morocco.

2. Pr. Svetlin Georgiev. Sofia University, Bulgaria.

3. Dr. Maryam Hosseini. IMPAM Isphahan, Iran.

4. Pr. Jarkko Kari. Turku University, Finland.

5. Pr. Mohsen Miraoui. IPEI Kairouan, Tunisia.

6. Pr. J. Leonel Rocha. Instituto Politécnico de Lisboa, Portugal

7. Pr. Karim Yadi. Tlemcen University, Algeria.
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Sur les modèles de prédation avec taux de disparition non

constant

A. Hammoum, K. Yadi and T. Sari

Nous proposons l’étude d’un modèle proie-prédateur général dans lequel le taux de dis-

parition est une fonction dépendant de la densité des espèces. Il s’agit aussi d’une tude

comparative avec les modèles existant dans la littrature en prcisant dans quelle mesure

notre modèle les contient et ce qu’il apporte de nouveau. Nous mettrons en vidence la

possibilit d’avoir une bifurcation de Hopf et une discussion est mene sur le paradoxe de

l’enrichissement du milieu. Nous dirons deux mots sur ce type de modèle lorsque le rende-

ment est considr comme très petit.

Mots clès: Modèle proie-prédateur, Mortalité non constante, Bifurcation de Hopf, Para-

doxe de l’enrichissement.
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On the integro-differential equations with reflection

Mohsen Miraoui

Maitre de conférences en Mathématiques Universit de Kairouan

Abstract: By developing important properties on the composition of functions with re-

flection, using some exponential dichotomy properties and an application of the fixed point

theorem, several new sufficient conditions for the existence and the uniqueness of an pseudo

almost automorphic solutions with measure for some general type reflection integro dif-

ferential equations. We suppose that the nonlinear part is measure pseudo almost auto-

morphic and in which we distinguish the two constant and variable cases for the Lipschitz

coefficients of the functions associated with this part. It is assumed that the linear part of

the equation considered admits an exponential dichotomy. Finally, an application is given

on the very interesting model of Markus and Yamabe.

References

1. Elhadi Ait Dads, Safoua Khelifi and Mohsen Miraoui, On the integro-differential

equations with reflection, Mathematical Methods in the Applied Sciences, (2020).
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Decidability in Group Cellular Automata

Jarkko Kari

Many undecidable questions concerning cellular automata are known to be decidable when

the cellular automaton has a suitable algebraic structure. Typical situations include linear

cellular automata where the states come from a finite field or a finite commutative ring,

and so called additive cellular automata in the case the states come from a finite com-

mutative group and the cellular automaton is a group homomorphism. In this talk we

generalize the setup and consider so-called group cellular automata whose state set is any

(possibly non-commutative) finite group and the cellular automaton is a group homomor-

phism. The configuration space may be any group shift - a subshift that is a subgroup

of the full shift - and still many properties are decidable in any dimension of the cellular

space. Our decidability proofs are based on algorithms to manipulate group shifts, and

on viewing the set of space-time diagrams of group cellular automata as multidimensional

group shifts. The trace shift and the limit set of the cellular automaton are lower dimen-

sional projections of the space-time diagrams and they can be effectively constructed. This

view provides algorithms to decide injectivity, surjectivity, equicontinuity, sensitivity and

nilpotency of the cellular automaton. Non-transitivity is semi-decidable. We also easily

establish that injectivity always implies surjectivity, that transitivity implies mixingness,

that non-sensitivity implies equicontinuity, and that jointly periodic points are dense in

the limit set. The talk is based on a joint work with Pierre Baur.

References

1. Pierre Baur, Jarkko Kari. Decidability in Group Shifts and Group Cellular Au-

tomata. In: Proceedings of MFCS 2020. Leibniz International Proceedings in Infor-

matics (LIPIcs) 170, 12:1-12:13, 2020.
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Topological rank of cantor factors of cantor minimal systems

Maryam Hosseini and Nasser Golestani

School of Mathematics, Institute for Research in Fundamental Sciences (IPM),

P. O. Box 19395-5746, Tehran, Iran

Email: maryhoseini@ipm.ir

Abstract: A Cantor minimal system is of finite topological rank if it has a Bratteli-Vershik

representation whose number of vertices per level is uniformly bounded. We prove that

if the topological rank of a minimal dynamical system on a Cantor set is finite then all

its minimal Cantor factors have finite topological rank as well. This gives an affirmative

answer to a question posed by Donoso, Durand, Maass, and Petite in full generality. As

a consequence, we obtain the dichotomy of Downarowicz and Maass for Cantor factors of

finite rank Cantor minimal systems: they are either odometers or subshifts.
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Discrete Pseudo Almost Periodic Solutions

for Some Difference Equations

Elhadi Ait Dads, Khalil Ezzinbi and Lahcen Lhachimi

aitdads@uca.ac.ma, ezzinbi@uca.ac.ma and lllahcen@gmail.com

University Cadi Ayyad

Faculty of Sciences Semlalia, Department of Mathematics

B.P. 2390 Marrakesh, Morocco

Unité associée au CNRST, URAC 02, Morocco et UMI 209-UMMISCO (IRD-UPMC)

France.

Abstract: In this work, we study the existence and uniqueness of pseudo al- most periodic

solutions for some difference equations. Firstly, we investigate the spectrum of the shift

operator on the space of pseudo almost periodic sequences to show the main results of this

work. For the illustration, some applications are provided for a second order differential

equation with piecewise constant arguments.

This work is organized as follows. In section 2, we consider geometrical properties of

the shift operator in general case and, we deal with the properties of shift operator the

spaces of almost periodic and on ergodic sequences. In section 3, we consider the existence

and uniqueness solutions of some difference equations using polynomial functions. In the

last section, we deal with the application of the previous results to some second order

differential equation with a piecewise constant argument.

Keywords: Difference equations, pseudo almost periodic sequences, schift operator.
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Applications of the Fixed Point Theory

Svetlin G. Georgiev

Many problems in science lead to nonlinear equations Tx + Fx = x posed in some closed

convex subset of a Banach space. In particular, ordinary, fractional, partial differential

equations and integral equations can be formulated like these abstract equations. It is the

reason for which it becomes desirable to develop fixed point theorems for such equations.

When T is compact and F is a contraction there are many classical tools to deal with such

problems. The main aim of this talk is to give some recent results for existence of fixed

points for some operators that are of the form T + F , where T is an expansive operator

and F is a k-set contraction and the talk offers an overview of recent developments of fixed

point theorems. They are given applications for existence of solutions for IVPs and BVPs

for ODEs, PDEs, impulsive dynamic equations, fuzzy dynamic equations and dynamic in-

clusions.

References

1. L. Benzenati and K. Mebarki,Multiple Positive Fixed Points for the Sum of Expansive

Mappings and k-Set Contractions, Math. Meth. Appl. Sci. Vol. 42, no.13 (1919),

4412–4426.

2. S. Djebali, K. Mebarki, Fixed point index on translates of cones and applications,

Nonlinear Studies, Vol. 21, No. 4, (2014) 579–589.

3. S. Djebali and K. Mebarki, Fixed point index for expansive perturbation of k-set

contraction mappings, Top. Meth. Nonli. Anal., Vol 54, No 2 (2019), 613–640.

4. Dejebali, S. Zahar, Upper and Lower Solutions for BVPs on the Half-line with Vari-

able Coefficient and Derivative Depending Nonlinearity. EJQTDE, 2011, No. 14, pp.

1-19.

5. S. Georgiev. Impulsive Dynamic Equations on Time Scales, Lap-Lambert Publishing

House, 2020, ISBN 978-620-2-66717-3.
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6. S. Georgiev and Z. Khaled. Boundary Value Problems on Time Scales, Vol. I, Vol.

II, CRC Press, 2021, Accepted.

7. S. Georgiev. Fuzzy Dynamic Equations, Dynamic Inclusions and Opti-mal Control

Problems on Time Scales, 2021, Springer, Accepted.
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Lambert W function in the stability and bifurcation

analysis of homographic Ricker maps

J. Leonel Rocha (a) and Abdel-Kaddous Taha (b)

(a) CEAUL. ADM, ISEL-Engineering Superior Institute of Lisbon,

Polytechnic Institute of Lisbon, Portugal.

(b) INSA, Federal University of Toulouse Midi-Pyrénées, Toulouse, France.

Abstract: Dynamical systems of the type homographic Ricker maps are considered, which

are particular cases of a new extended-Ricker population model: a discrete-time population

model whose dynamics of the population xn, after n generations, with n ∈ N , can be defined

by the difference equation xn+1 = b(xn)x
γ−1
n s(xn), and written in the following form

xn+1 = r
xγn

β + xn
e−δxn

where is the cooperation or Allees effect parameter. The per-capita birth or growth func-

tion b(xn) = cxn

β+xn
is a Hollings type II functional form or rectangular hyperbola, where

c > 0 measures the maximal reproduction or growth rate and the ratio c/β measures the

relative growth rate as the population size is smaller. The survival function for generation

n or the intraspecific competition is given by s(xn) = eµ−xn , where µ > 0 is the density-

independent death rate, δ > 0 is the carrying capacity parameter, with r = ceµ, γ and β

real parameters.

The purpose of this talk is to investigate the nonlinear dynamics properties of the homo-

graphic Ricker maps, denoted by f(x; r, δ, β), for some particular cases of the parameter.

Then we study the fixed points of these homographic maps as analytical solutions of Lam-

bert W functions. Using general properties of Lambert W functions, we establish conditions

for the existence, nature and stability of the non-zero fixed points. Throughout this work,

we will show how the use of LambertW functions are useful to formalize analytical results

and to represent bifurcation curves. Fold and flip bifurcation structures of the homographic

Ricker maps are investigated, in which there are flip codimension-2 bifurcation points and

cusp points, while some parameters evolve. Some communication areas and big bang bi-

furcation curves are also detected, see Fig.1. Several numerical simulations illustrate the

theoretical results established.
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Discrete dynamical systems

Participants :

1. Yahiaoui Yaniss. Bejaia University, Algeria.

2. Tarek Sellami. Sfax University, Tunisia.

3. Hacene Gharout. Bejaia University, Algeria.

4. Saliha Djenaoui. Guelma University, Algeria.

5. Smäıl Kaouache. Centre universitaire de Mila, Algeria.

6. Amira Ayari. Annaba University, Algeria.

7. AYMEN HAJ SALEM. Institut Supérieur de gestion de Gabès, Tunisia.

8. Rezki chemlal. Bejaia University, Algeria.

9. Rachid BOUKOUCHA. Bejaia University, Algeria.

10. Saad Eddine Hamizi. Bejaia University, Algeria.

11. Zaamoune Faiza. Biskra University, Algeria.

12. Bouharket Benaissa. Tiaret University, Algeria.

13. Rabah Bououden. University Center, Mila, Algeria.

14. Nouar Chorfi. Tebessa University, Algeria.

15. Merzoug Ibtissem. Annaba University, Algeria.

16. Mouna Yahiaoui. Bejaia University, Algeria.

17. Nouressadat TOUAFEK. Jijel University, Algeria.

18. Tinhinane Meziani. University of Bejaia, Algeria.
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Sur les bifurcations d’un certain système dynamique discret

Yaniss Yahiaoui (1), Nourredine Akroune (2)

Laboratoire des Mathématiques Appliquées, Faculté des Sciences Exactes,

Université de Bejaia, 06000 Bejaia, Algeria.

E-mail: (1) yahiaouiyaniss79@gmail.com, (2) akroune n@yahoo.fr

Résumé : L’objectif de ce travail est d’étudier la dynamique et les bifurcations d’un

système dynamique discret particulier. La bifurcation de Neimark-Sacker est analysée

algébriquement et illustrée par des simulations numériques. De plus, des bifurcations

globales sont observées par simulation. Il est à noter que l’étude de la succession des bifur-

cations permet de comprendre les mécanismes qui conduisent à l’apparition du chaos. En

effet, plusieurs attracteurs chaotiques ont été observés dans le plan de phase pour certaines

valeurs particulières des paramètres.

Mots clés: Systèmes dynamiques discrets; bifurcation de Neimark-Sacker; bifurcations

globales; bassins d’attraction; attracteurs chaotiques.

Références
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4. mira C. Mira, G. Bischi and L. Gardini. Basin Fractalization Generated By a Two-

dimensional Family of (Z1 − Z3 − Z1) Maps, International Journal of Bifurcations
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5. mira 1 C. Mira, L. Gardini, A. Barugola and J.C. Cathala. Chaotic dynamics in two-
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Commun dynamics of Rauzy fractals

with the same incidence matrix

Tarek Sellami

Université de Sfax, Tunisie.

E-mail: tarek.sellami.math@gmail.com

Abstract: The matrix of a substitution is not sufficient to completely determine the

dynamics associated with it, even in the simplest cases since there are many words with

the same abelianization.

In this talk we study the common points of the canonical broken lines associated with two

different irreducible Pisot unimodular substitutions σ1 and σ2 having the same incidence

matrix. We prove that if 0 is an inner point to the Rauzy fractal associated with the

substitution σ1, and σ1 verifies the Pisot conjecture then these common points can be

generated with a substitution on an alphabet of so-called balanced pairs, and we obtain in

this way the intersection of the interior of two Rauzy fractals.
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Evolution of a three-dimensional endomorphism

towards hyper chaos

Hacene Gharout(1), Nourredine Akroune(1) and Abdel-Kaddous Taha(2)

(1) Laboratoire des Mathématiques Appliquées, Faculté des Sciences Exactes,

Université de Bejaia, 06000 Bejaia, Algeria.
(2) INSA, University of Toulouse, 135 Avenue de Rangueil, INSA de Toulouse, France.

Abstract: The aim of this work is to study the chaotic dynamics of a non-invertible and

non-linear three-dimensional transformation, called endomorphism, through contact bifur-

cations with a new type of critical manifold. The critical manifolds observed in the case of

dimension three are different from the critical points and critical lines known in dimensions

one and two.

keywords: critical spaces, closed invariant curve, contact bifurcation, weakly chaos, chaos.

We will focus on the endomorphism T , defined by:

T


xn+1 = yn,
yn+1 = zn,
zn+1 = x2n + ayn(xn + zn) + b.

where a and b are two real parameters.

The equation of the critical manifold EC−1 of T satisfies | J(x, y, z) |= 0, where

J(x, y, z) is the Jacobian of T at the point (x, y, z): EC−1 = {(−a
2
y, y, z), y, z ∈ IR}.

EC0 = T (EC−1) = {(y, z, 1
4
a2y2 + ay(−1

2
ay + z) + b), y, z ∈ IR}.

The critical spaces of order n+ 1, are defined by ECn+1 = T (ECn) for all n ≥ 0.

An equivalent way for an order n, n ≥ 0, the critical varieties are defined by

ECn = T n+1(EC−1) (see figure 1).

T admits two chaotic dynamics, by varying one of the parameters a and b:

1. For b fixed and a varies, T has two dynamics for the variations of a, positively and

negatively, which evolve towards chaotic attractors.

2. For a fixed and b varies, we have the coexistence of attractors which evolve towards

chaotic attractors (see figure 2), then towards the same hyper chaotic attractor, having a

Lyapunov dimension equal to 3 and three positive Lyapunov exponents.
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Figure 1: Critical sapces: EC−1 in brown, EC in green, EC1 in blue, EC2 in gray, EC3 in
cyan, EC4 in orange, EC5 in black, EC6 in white and EC8 in yellow.

Figure 2: b = −0.1 and b is variable.
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Overview of the generic limit set
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Abstract: In topological dynamics, the generic limit set is the smallest closed subset which

has a comeager realm of attraction. We study some of its topological properties, and the

links with equicontinuity and sensitivity. We emphasize the case of cellular automata, for

which the generic limit set is included in all subshift attractors, and discuss directional

dynamics. Its main properties are:

• The generic limit set of a nonwandering system (in particular, of a surjective CA) is

full.

• The generic limit set of a semi-nonwandering system (in particular, of an oblique CA)

is its limit set.

• The generic limit set of an almost equicontinuous system is exactly the closure of the

asymptotic set of its set of equicontinuity points.

• The generic limit set of an equicontinuous dynamical system is its limit set. Moreover,

if one has an equicontinuous cellular automaton such that its generic limit set is finite, then

it is nilpotent.

• The generic limit set of a cellular automaton which is almost equicontinuous in two

directions of opposite sign is finite; it is the periodic orbit of a monochrome configuration.

• The generic limit set of a sensitive system is infinite.

Keywords: Cellular automaton, topological system, limit set, basin of attraction
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Chaos and mixed combination synchronization of three identical

fractional hyperchaotic systems with different fractional-order
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Abstract. In this work, we introduce a new approach to investigate mixed combination

synchronization (MCS) of three identical fractional hyperchaotic systems with different or-

der. Specifically, this kind of synchronization is coexistence between complete combination

synchronization, combination anti-synchronization, projective combination synchroniza-

tion and modified projective combination synchronization. With the help of the stability

theory of fractional-order systems, an active controller is designed to assure that the MCS

is achieved. Finally, we take the fractional Lorenz system as an example to show the ef-

fectiveness of the proposed synchronization scheme.

Keywords. Combination synchronization, Caputo differential operator, Active control,

Fractional-order chaotic systems.

1. Problem formulation of the MCS

In this section, we introduce the concept of the MCS of three identical fractional hyper-

chaotic dystems with different fractional-order. The model can be given as follow:

Dαx = f(x), (1)

Dαy = g(y), (2)

Dαz = h(z) + u, (3)

where Dα is the Caputo differential operator (0 < α ≤ 1), x = (x1, x2, x3, x4)
T ∈ IR4,

y = (y1, y2, y3, y4)
T ∈ IR4 are the state variables of two drive systems, z = (z1, z2, z3, z4)

T ∈
IR4 is the state variable of the response system, f, g, h : IR4 → IR4 are the continuous

vector-valued functions and u = (u1, u2, u3, u4)
T ∈ IR4 is the controller vector which will

be designed.

The definition of the proposed mixed combination synchronization is given as follows.

Definition: The two drive systems (1)-(2) and the response system (3) are said to achieve
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the MCS between complete combination synchronization, combination anti-synchronization,

projective combination synchronization and modified projective combination synchroniza-

tion if there exist controller u and two constant matrices B = diag(1, 1, 1, σ) and

C = diag(1,−1, β, 1) such that the synchronization error: e(t) = Bz(t)− C(y(t) + x(t),

satisfy the condition limt→∞ ||e(t)|| = 0, where ||.|| stands for the matrix norm.

Now, from equations (1), (2) and (3) , we can get the following error system:

Dαe = BDαz − CDα(x+ y)

= Ae+ (BA− AB)z − (CA− AC)(x+ y) +

+ BH(z)− C(F (x) +G(y)) +Bu,

where A ∈ IR4×4 is the linear part of the system, F , G and H : IR4 →∈ IR4 are the

nonlinear parts.

To achieve the desired MCS between the above systems, the nonlinear active controller

u = (u1, u2, u3, u4)
T is constructed as:

u = B−1((CA− AC)(x+ y)− (BA− AB)z + C(F (x) +G(y))−BH(z) +Me), (4)

where M ∈ IR4×4 is a feedback gain matrix to be determined.

So, when we use the controller (4) to control the fractional-order response system (3), the

MCS problem of the fractional-order drive systems (1)-(2) and fractional-order response

system (3) is changed into the analysis of the asymptotical stability of the following system:

Dαe = (A+M)e.

Then, we have the following result.

Theorem: If the matrix M is selected such that all roots λi of the characteristic equation:

det(diag(λsα1 , λsα2 , λsα3 , λsα4)− (A+M)) = 0,

satisfy | arg(λi)| >
π

2s
, i = 1, 2, 3, 4, where s is the least common multiple of the denomina-

tors of λi, then the two drive systems (1)-(2) and response system (3) can be synchronized

in the sens of MCS under the controller (4).
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2. Conclusion

In this work, we have presented a new approach to study the problem of mixed com-

bination synchronization of three identical fractional hyperchaotic systems with different

fractional-order. In particular, this work has shown that complete combination synchro-

nization, combination anti-synchronization, projective combination synchronization and

modified projective combination synchronization coexist when synchronizing two master

system with one response system. The numerical example reported through the paper has

clearly highlighted the capability of the proposed approach.
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Sufficient conditions for exponential stability of some non linear

perturbed system on time scales

Amira Ayari
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Abstract: This paper focuses on the problem of exponential stability of certain classes

of dynamic perturbed systems on time scales using time scale versions of some Gronwall

type inequalities.We prove under certain conditions on the nonlinear perturbations that

the resulting perturbed nonlinear initial value problem still acquir exponential stable, if

the associated time-varying linear system has already owned this property. Furthermore,

one example is given to illustrate the applicability of the obtained results.

Keywords: Dynamic equation, time scale, Gronwall inequality, Exponential stability.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was introduced by

Hilger [5] in his Ph. D. thesis in 1988 in order to unify continuous and discrete analysis. A

great deal of work has been done since 1988, unifying the theory of differential equations

and the theory of difference equations by establishing the corresponding results in time

scale setting. A time scale T is an arbitrary nonempty closed subset of the set of real

numbers IR. During the last decades, time scale methods have rapidly been developed,

and have received a lot of attention by several authors, not only to unify continuous and

discrete processes, but also help reveal diversities in the corresponding results.The analysis

of nonlinear perturbations of linear systems is not only important for its own sake but also

has a broad range of applications.

One of the analytic methods of the perturbation theory was referred to integral inequalities

to quest some type of stability. Latterly, there have been several papers [1, 4], studying

various types of stability of dynamical time scale systems.

In this work, we investigate uniform exponential stability for nonlinear perturbed systems

on time scales by using the Gronwall- Bellman-Bihari type integral inequality.

1.1. Time scale calculus

In what follows, IR denotes the set of real numbers, IR+ = [0,∞) is the given subset of IR

and T is an arbitrary time scale. The forward and backward jump operators σ, ρ : T → T

are defined by σ(t) := inf {s ∈ T : s > t}, ρ(t) = : sup {s ∈ T : s < t}. Also we define the
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interval [a, b] means the set {t ∈ T : a ≤ t ≤ b} for the points a < b in T. If b = +∞,

we denote T+
a = [a,+∞[ .for reader’s convenience, as they are detailed in the books of M.

Bohner and A. Peterson [2, 3].

1.2. Stability definitions

For our purpose, we will assume that the time scale T is unbounded above, i.e., supT =

+∞. Let t0 ∈ T and t ∈ T+
t0 . Let us consider time scale dynamic equations of the form

x∆(t) = f(t, x(t)),
x(t0) = x0.

(1)

where x : T+
t0 → IRn is the state vector and f : T+

t0 × IRn → IRn is a rd-continuous

vector-valued function. It is assumed that the conditions for the existence of a unique

solution of system (1) are satisfied. For the existence, uniqueness and extensibility of its

solutions, one can refer to [2] .Designate any solution of (1) with the initial state (t0, x0) by

x(t) = x(t, t0,x0).The Euclidean norm of an n × 1 vector x(t) is defined to be a real-valued

function of t and is denoted by ∥x(t)∥ =
√
x(t)Tx(t).

Definition:

The system of dynamic equations (1) is said to be uniformly exponentially stable if there

exist constants γ ≥ 1 (independent of t0) , λ > 0 (−λ ∈ ℜ+) such that

∥x(t)∥ ≤ γ∥x0∥e−λ(t, t0).

Now, we give the following characterization in terms of the transition matrix for system

(1).

2. Main Results

In this study, we consider, a particular class of systems (1), i.e the system

x∆(t) = A(t)x+ F (t, x(t)),
x(t0) = x0.

(2)

where x0, x ∈ IRn, F (t, 0) = 0, t0 ∈ T, and F : T×IRn → IRn is an rd-continuous function.

f represents the disturbance of the time-varying linear system :

x∆(t) = A(t)x,
x(t0) = x0, x0 ̸= 0.

(3)
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We prove under certain conditions on the nonlinear perturbations that if system (3) is

uniformly exponentially stable then system (2) has the same propriety.

3. Numerical examples

Let T be a mixed continuous-discrete time scale and t0 = 0.The discrete part has non-

uniform step size. The graininess function is bounded as follows: ∀t ∈ T+
0

0 ≤ µ(t) < µmax =
1

2
.

Consider the following time-varying system:

x∆1 (t) = −x1(t) + 1
2
ln( 1

(t+1)(σ(t)+1)
|x1(t)|+ k(t)|x2(t)|√

x2
1(t)+x2

2(t)+1
+ 1),

x∆2 (t) = −x2(t) +
√
3
2
ln( 1

(t+1)(σ(t)+1)
|x2(t)|+ k(t)|x1(t)|√

x2
1(t)+x2

2(t)+1
+ 1),

x(0) = (x1,0 , x2,0),

(5)

where x = (x1, x2)
T ∈ IR2, k ∈ Crd(T, IR+) and k(t) =

t+σ(t)+2
(t+1)2(σ(t)+1)2

e−λ(σ(t), 0).

We prove that the above system is uniformly exponentially stable subject to some sufficient

conditions.

Conclusion

This paper has been concerned with the problem of exponential stability for nonlinear

system .Sufficient conditions for exponential stability of a class of dynamic systems on

arbitrary time scales are obtained using integral inequalities approach. On the mentioned

topics, new theorems are proven. The obtained results include and improve some results in

the literature.Moreover, two examples are given to illustrate the applicability of the main

result.
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Abstract: Let G be a finitely generated group acting by homeomorphisms on a dendrite

X. We show that (G,X) is a pointwise recurrent flow if one of the following two statements

holds: (G,X) is a minimal and proximal flow; and cutpoints of X is periodic and every

non periodic endpoint belongs to a G-subodometer.

Keywords: Dendrite, group action, minimal set, recurrent, proximal.

Introduction

Given a topological group G and a compact topological space X, in the sequel, a flow

(G,X), stands for a continuous action of G on X. One of the main problems concerning

studying a flow or a transformation group (G,X) is the relationships between the following

dynamical notions: (1) pointwise recurrence, (2) almost periodicity, (3) the orbit closure

relation is closed, and (4) equicontinuity in the setting of finitely generated group action on

a compact metric space. Several authors have been interested in studying the relations be-

tween the above notions. In [1, 4], it is shown that the above proprieties are equivalent for

a finitely generated group G on either a compact zero-dimensional space or a finite graph

space X. Recently, [6], Marzougui and Naghmouchi, proved the equivalence between (2)

and (3) in the sitting of local dendrite flow, where G is an arbitrary group.

There has been a particular attention for the study of groups acting on (local)dendrites

[9, 8,5]. The interest in studying transformation groups on these spaces is due first to

dendrites appear as Julia sets in complex dynamics [2] and second to the study of three-

dimensional hyperbolic geometry [8].

1. Flows

A triple (G,X, π) consisting of a topological group G, a compact metric space X and a

continuous action π : G × X → X of G on X is called a flow on X ((G,X) for short).

For any x ∈ X the subset Gx = {gx : g ∈ G} is called the orbit of x. A point x of X is

periodic under G if Gx is finite.
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A flow (G,X) is minimal if all orbits are dense in X. A point x ∈ X is almost periodic if

for every neighborhood U of X there exists a syndetic subset S of G such that Sx ⊂ U . x

is almost periodic if and only if Gx is minimal. A flow (G,X) is pointwise almost periodic

if every point x ∈ X is almost periodic.

Two points x and y in X are said to be proximal with respect to the action of G if there

exists a sequence {gk} in G such that the sequences {gkx} and {gky} converge to one and

the same point. (G,X) is a proximal flow if any two points in X are proximal.

The definition of recurrence given in [1]. Let G be a finitely generated group and Let

Γ = {f1, . . . , fp} be a finite set of generators. Denote by Br the set of elements of G of

length ≤ r. For g ∈ G let K(g) = B|g|−1.g where |g| is the length of g. A subset C of G

is a cone if there exists a sequence gn ∈ G with |gn| → +∞ and C = limn→∞K(gn). By

[1, Proposition 1.5], in a cone C there exists a sequence (cn) such that Bn.cn ⊂ C and for

each g ∈ G, gcn ∈ C for some n.

Definition: [1] Let (G,X) be a flow where X is a compact metric space and let C be

a subset of G such that e /∈ C. We say that a point x ∈ X is C-recurrent, if for every

neighborhood U of x, Cx∩U ̸= ∅. We say that x is recurrent, if it is C-recurrent for every

cone C.

Let R(G) be the set of recurrent points. A flow (G,X) is pointwise recurrent if R(G) = X.

2. Dendrites

A compact connected metric space is called a continuum. An arc is any space homeomor-

phic to the compact interval [0, 1]. A topological space is arcwise connected if any two of

its points can be joined by an arc. A dendrite D is a locally connected continuum, which

contains no simple closed curve (homeomorphic to §1). Recall that any two distinct points

x and y of a dendrite D can be joined by a unique arc with endpoints x and y, denote this

arc by [x, y]. We put [x, y) = [x, y] \ {y}, (x, y] = [x, y] \ {x} and (x, y) = [x, y] \ {x, y}.
Every sub-continuum of a dendrite is a dendrite. In addition, every dendrite is hereditarily

locally connected and every connected subset of a dendrite D is arcwise connected [7].

Main result

Theorem 1. Let G be a finitely generated group acting by homeomorphisms on a dendrite

X. We show that (G,X) is a pointwise recurrent flow if one of the following two statements

holds:

1. (G,X) is a minimal and proximal flow;
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2. Every cutpoints of X is periodic and every non periodic endpoint is regularly recur-

rent.

Theorem2. Let G be a finitely generated group acting by homeomorphisms on a dendrite

X with countable set of endpoints. (G,X) is a pointwise recurrent flow if (G,X) is point-

wise periodic.
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Abstract: Endomorphisms of the shift are maps that commutes with the shift. They are

characterized by the existence of local function which determine by local behavior the im-

age of an element of the configurations space. Dynamical behavior of CA is studied mainly

in the context of discrete dynamical systems by equipping the space of configurations with

the product topology which make it homeomorphic to the Cantor space.

We want to characterize equicontinuous factors of endomorphisms of the shift. We show

if there is an equicontinuous factor then there is also an equicontinuous endomorphism of

the shift as a factor.

We show also that if the endomorphism of the shift has equicontinuity points without being

equicontinuous there is an infinity of equicontinuous factors up to conjugacy.

Keywords: Bernoulli shift, endomorphism of the shift, equicontinuous factor.
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Abstract: In this work we give an explicit expression of invariant algebraic curves, then

we prove that these systems are integrable and we introduce an explicit expression of a

first integral of a multi-parameter planar polynomial differential systems of degree nine of

the form 
x′ =

dx

dt
= x+ P5(x, y) + xR8(x, y),

y′ =
dy

dt
= y +Q5(x, y) + yR8(x, y),

(1)

where

P5(x, y) = − (a+ 2)x5 + (4 + 4b)x4y − (2a+ 4)x3y2 + (8 + 4b)x2y3 − (a+ 2)xy4 + 4y5,

Q5(x, y) = −4x5 − (a+ 2)x4y + (4b− 8)x3y2 − (2a+ 4)x2y3 + (4b− 4)xy4 − (a+ 2) y5,

and

R8(x, y) = (a+ 1)x8 − 4bx7y + (4a+ 4)x6y2 − 12bx5y3 + (6a+ 6)x4y4 − 12bx3y5

+(4a+ 4)x2y6 − 4bxy7 + (a+ 1) y8,

in which a, b are real constants.

Moreover, we determine sufficient conditions for a polynomial differential system to possess

two limit cycles : one of them is algebraic and the other one is shown to be non-algebraic,

explicitly given. Concrete examples exhibiting the applicability of our result are introduced.

Main result

Our main result is contained in the following theorem.

Theorem

Consider a multi-parameter planar polynomial differential systems (1), then the following

statements hold.

1) The origin of coordinates O (0, 0) is the unique critical point at finite distance.
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2) The curve U (x, y) = x4 + y4 + 2x2y2 − 1, is an invariant algebraic curve of system (1)

with cofactor K (x, y) = (−4) (x2 + y2)
2
(
(−a− 1) (x2 + y2)

2
+ 4bxy (x2 + y2) + 1

)
.

3) The system (1) has the first integral

H (x, y) =
(x2 + y2)

2
+
(
1− (x2 + y2)

2
)
exp

(
a arctan y

x
+ b cos

(
2 arctan y

x

))
f(arctan y

x
)(

(x2 + y2)2 − 1
)
exp

(
a arctan y

x
+ b cos

(
2 arctan y

x

)) ,

where f(arctan y
x
) =

∫ arctan y
x

0
exp(−as− b cos 2s)ds.

4) The system (1) has an explicit limit cycle, given in Cartesian coordinates by (Γ1) :

x4 + y4 + 2x2y2 − 1 = 0.

5) If a > 0 and b ∈ IR−{0}, then system (1) has non-algebraic limit cycle (Γ2), explicitly

given in polar coordinates (r, θ), by the equation

r (θ, r∗) =

 exp (aθ + b cos 2θ)

(
e2πa

1− e2πa
f(2π) + f(θ)

)
−1 + exp (aθ + b cos 2θ)

(
e2πa

1− e2πa
f(2π) + f(θ)

)


1
4

,

where

f(θ) =

∫ θ

0

exp(−as− b cos 2s)ds .

Moreover, the non-algebraic limit cycle (Γ2) lies inside the algebraic limit cycle (Γ1).

Keywords: Limit cycle; Riccati equation; invariant algebraic curve; first Integral.
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Abstract: The existence of limit cycles is interesting and very important in applications.

It is a key to understand the dynamic of polynomial differential systems. The aim of this

paper is to investigate a class of a multi-parameter planar polynomial differential systems.

Under some suitable conditions, the existence of two limit cycles, these limit cycles are

explicitly given. Some examples are presented in order to illustrate the applicability of our

results.
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Introduction

One of the main problems in the qualitative theory of differential equations is the study

of the limit cycles of planar differential systems and specially of the planar polynomial

differential systems of the form 
x′ =

dx

dt
= P (x, y),

y′ =
dy

dt
= Q(x, y),

(1)

where P (x, y) and Q(x, y) are real polynomials in the variables x and y.

In this paper we give an explicit expression of invariant algebraic curves, then we prove

that these systems are integrable and we introduce an explicit expression of a first integral

of a multi-parameter planar polynomial differential system of degree nine of the form


x′ =

dx

dt
= xS4(x, y) + P7(x, y) + xR8(x, y),

y′ =
dy

dt
= yS4(x, y) +Q7(x, y) + yR8(x, y),

(2)
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where

P7(x, y) =
1
3
(x2 + y2)

2
((2a− b) x3 + (15d− 6c) x2y + (2b− a) xy2 + (6d− 3c) y3) ,

Q7(x, y) = −1
3
(x2 + y2)

2
((6d− 3c)x3 + (b− 2a) x2y − 3dxy2 + (a− 2b) y3) ,

S4(x, y) = αx4 + λx3y + δx2y2 + λxy3 + ηy4 and

R8(x, y) = −1
3
(x2 + y2)

2
((3α + 2a− b)x4 + (3λ− 3c+ 9d) x3y + (3λ− 3c+ 9d)xy3+

(a+ b+ 3δ)x2y2 + (2b− a+ 3η) y4),

in which a, b, c, d, α, λ, δ, η are real constants.

Moreover, we determine sufficient conditions for a polynomial differential system to

possess two limit cycles, explicitly given. Concrete examples exhibiting the applicability

of our result are introduced.

We define the trigonometric functions

F (θ) = 1
8
(3α + δ + 3η) + 1

2
λ sin 2θ + 1

2
(α− η) cos 2θ + 1

8
(α− δ + η) cos 4θ,

G (θ) = 1
6
(a+ b) + 1

2
(a− b) cos 2θ + 1

2
(3d− c) sin 2θ,

K (θ) = −1
6
a− 1

6
b− 3

8
α− 1

8
δ − 3

8
η + 1

2
(c− 3d− λ) sin 2θ + 1

8
(δ − α− η) cos 4θ+

1
2
(b− a− α + η) cos 2θ, M (θ) =

∫ θ

0

(
2K(t)
2d−c

exp
(∫ t

0

(
2G(w)+4K(w)

c−2d

)
dw
))

dt and N (θ) =

exp
(∫ θ

0

(
2G(w)+4K(w)

c−2d

)
dw
)
.

Main result

Our main result is contained in the following Theorem.

Theorem:

Consider a multi-parameter planar polynomial differential system (2), then the following

statements hold.

1) If 2d− c ̸= 0, then the origin of coordinates O (0, 0) is the unique critical point at finite

distance.

2) The curve U (x, y) = x2 + y2 − 1, is an invariant algebraic curve of system (2) with

cofactor

K (x, y) = −2

3

(
x2 + y2

)
((2a− b+ 3α)x6 + 3αx4 + 3ηy4 + (9d− 3c+ 3λ)xy

(
x2 + y2

)2
+

3x2y2
(
(a+ α + δ) x2 + (b+ δ + η) y2 + δ

)
+ 3λxy

(
x2 + y2

)
+ (2b− a+ 3η) y6).
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3) The system (2) has the first integral

H (x, y) =
N
(
arctan y

x

)
+ (1− x2 − y2)M

(
arctan y

x

)
x2 + y2 − 1

.

4) The system (2) has an explicit limit cycle, given in Cartesian coordinates by (Γ1):

x2 + y2 − 1 = 0.

5) If

2
3
a+ 2

3
b+ 3α + δ + 3η > 2 |c− 3d− 2λ|+ 2 |b− a− 2α + 2η|+ |δ − α− η| ,

−1
3
a− 1

3
b− 3

4
α− 1

4
δ − 3

4
η > |c− 3d− λ|+ 1

4
|δ − α− η|+ |b− a− α + η| ,

δ ̸= α + η and c < 2d,

then the system (2) has another limit cycle (Γ2), explicitly given in polar coordinates (r, θ)

by

r (θ, r∗) =

√
(N (2π)− 1) (N (θ) +M (θ)) +M (2π)

(N (2π)− 1)M (θ) +M (2π)
.

Moreover, the limit cycle (Γ1) lies inside the limit cycle (Γ2).
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Abstract: In this paper, we give formally a new method discovery hidden bifurcations

in the multispiral Chua attractor. This method is based on the mind idea of the genuine

Leonov and Kuznetov technique searching for hidden attractrs but applied in a extremely

different way where the numbers of spiral happening is discrete. In this case such hidden

bifurcations are controled by a parameter ε, this added which is not be found from the

initial problem is totally made to show the real structure of multispiral attractor. We study

completely the multispiral Chua attractor, generated via transformation, and a verification

numerically our method for unusual and equal the number of spiral from 2 to 6.

Keywords: Chua system, transformation, hidden bifurcations. Abstract: In this pa-

per, we give formally a new method discovery hidden bifurcations in the multispiral Chua

attractor. This method is based on the mind idea of the genuine Leonov and Kuznetov

technique searching for hidden attractrs but applied in a extremely different way where the

numbers of spiral happening is discrete. In this case such hidden bifurcations are controled

by a parameter ε, this added which is not be found from the initial problem is totally made

to show the real structure of multispiral attractor. We study completely the multispiral

Chua attractor, generated via transformation, and a verification numerically our method

for unusual and equal the number of spiral from 2 to 6.

Keywords: Chua system, transformation, hidden bifurcations.

Introduction

In the framework of the specific theory chaotic systems, the name ”Chua attractors ”

is these days extremely used because it is the asymptotic attractor of settlements of the

system of differential equations designing the dynamics of the Chua’s circuit. The Chua’s

system is among the systems that have been studied for the last decades, due to their

promising applications in various real-world technologies. Newly a novel notion about the

classification of attractors has been
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presented: periodic to the type of hidden attractors. In 2009 − 2010, Leonov Kuznetsov

proposed an analytical-numerical method for the location of hidden attractors in dynamic

systems [2]. In 2016 Menacer, et al.[1] applied analytical-numerical methods for investiga-

tion of hidden attractors in the Chua system via since function, they noticed that have a

change in the numbers of scrolls when we change the parameter epsilon in a system, this

change they called hidden bifurcations. After that by three years later, Zaamoune et al

[3], applied a hidden bifurcation method in other systems (design and analysis of multi

scroll chaotic attractors from saturated function series), they discovered symmetries in the

hidden bifurcation routes. The novelty that this article introduces is, the study of hidden

bifurcation of multi scroll chaotic attractors via parallel transformation with a method

based on a homotopy parameter ε whilst conserving the number of scrolls constant [1].

Chua’s system with 1−D scroll chaotic attractor generated via parallel trans-

formation

Here, to generate 1−D n scroll chaotic attractor, we present a Chua’s system from parallel

transformation as folow : 
·
x = a(y − h(x)
·
y = x− y + z
·
z = −by

, (1)

where a = 10, b = 16 and h(x) is the nonlinear function, defined by one of the two following

forms:

To obtain an even number n of scrolls according to the formula ( n = 2N+2), the function

h(x) is given as follow

h(x) = kx− pk

[
−sgn(x) +

N∑
i=0

(x+ 2ip)−
N∑
i=0

(x− 2ip)

]
(1)

where p, k are real numbers.

sgn (x) =

{
+1 if x > 0
−1 if x < 0

For a = 10, b = 16, p = 0.5, and k = 0.3, 6 − scroll are generated as the verged chaotic

attractor of system (1), with both formulas, respectively (2), as shown in fig.1 and fig.2.

a, b, p, k are real numbers. The formula to calculated the number n of scrolls, it’s explained
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in Kehui Sun et al [4] which equalizes (n = 2N + 2 ).
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Abstract: In this paper, we derive new proof of Hardy dynamic integral inequality by us-

ing the dynamic Minkowski integral inequality on time scale and we also use an interesting

lemma.
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1. Introduction and preliminaries

In 2005 Pavel Rehak [3] presented a Hardy inequality on time scales:

Theorem 1. Let p > 1 be a constant, a function f be nonnegative and such that the

delta integral

∫ x

a

f p(t)∆t exists as a finite number. Denote F (t) :=

∫ x

a

f(t)∆t. Then

∫ ∞

a

(
F σ(x)

σ(x)− a

)p

∆x ≤
(

p

p− 1

)p ∫ ∞

a

f p(x)∆x. (1)

unless f ≡ 0. If, in addition, (x)
x

→ 0 as x→ ∞ , then the constant is the best possible.

The aim of this presentation is to obtain a similar result with a new proof by utilizing a

variant of the Minkowski inequality on time scales and a new lemma derived from chain

rule [1].

From the Theorem 9.1 (page 185) [2], we can drive the following corollary.

Let 0 ≤ a < b ≤ +∞ and 0 ≤ c < d ≤ +∞, we introduce the rectangle R in T1 × T2,

defined by R = [a, b)× [c, d) = {(s, t); s ∈ [a, b) and t ∈ [c, d)}.
Corollary 1. Let 1 ≤ p < ∞, ϕ : R1 −→ IR be a continuous function on T1 × T2 and

f(s, t) ∈ Lp
∆([a, b)) for almost all t ∈ [c, d). Then∫ b

a

∣∣∣∣∫ d

c

ϕ(s, t)∆2t

∣∣∣∣p∆1s ≤

(∫ d

c

(∫ b

a

|ϕ(s, t)|p∆1s

) 1
p

∆2t

)p

. (2)

hold if the right-hand side is finite.

Now we give the lemma which will be used in the proof of main theorem.
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Lemma 1. For 1 ≤ p <∞, we have∫ 1

0

1

(σ(s))
1
p

∆ s ≤ p

p− 1
. (3)

Proof. Let h be a nonnegative and non-decreasing function on [a, b]T, applying the chain

rule for −1 < q < 0, we get

(hq+1)∆ = (q + 1)h∆
∫ 1

0

(r hσ + (1− r)h)q dr

≥ (q + 1)h∆
∫ 1

0

(r hσ + (1− r)hσ)q dr

= (q + 1)h∆(hσ)q.

Let p > 1 and taking h(s) = s, q = −1
p
, we deduce that

(σ(s))−
1
p ≤ p

p− 1
(s1−

1
p )∆,

by integrating the above inequality, we get∫ 1

0

(σ(s))−
1
p∆ s ≤ p

p− 1

∫ 1

0

(s1−
1
p )∆∆ s =

p

p− 1
.

2. Main result

The dynamical Hardy integral inequality

Theorem 2. Let T be a time scales, a ∈ T, p > 1 and g be non-negative continuous

functions on [a, ∞)T, let

G(x) =

∫ x

a

g(t)∆t.

If ∆(σ(x)) = ∆ x, then∫ ∞

a

(
Gσ(x)

σ(x)− a

)p

∆x ≤
(

p

p− 1

)p ∫ ∞

a

g p(x)∆x. (4)

Proof. Taking t = (x− a)σ(s) + a , then

G(x) =

∫ x

a

g(t)∆t = (x− a)

∫ 1

0

g((x− a)σ(s) + a)∆s,
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by using Minkowski’s inequality (2), we have

∫ ∞

a

(
Gσ(x)

σ(x)− a

)p

∆x =

∫ ∞

a

(∫ 1

0

g((σ(x)− a)σ(s) + a)∆s

)p

∆x

≤

(∫ 1

0

[∫ ∞

a

g p((σ(x)− a)σ(s) + a)∆x

] 1
p

∆ s

)p

we put τ − a = (σ(x) − a)σ(s), this gives us that ∆ x = ∆(σ(x)) =
1

σ(s)
∆ τ , by applied

(3), we get

∫ ∞

a

(
Gσ(x)

σ(x)− a

)p

∆x ≤

(∫ 1

0

[
1

σ(s)

∫ ∞

a

g p(τ)∆τ

] 1
p

∆ s

)p

=

(∫ 1

0

σ(s)−
1
p∆ s

)p ∫ ∞

a

g p(τ)∆τ

≤
(

p

p− 1

)p ∫ ∞

a

g p(τ)∆τ.

Remark. If we put T = IR, we get the classical Hardy inequality.

If we take (T = Z), we deduce the discrete form of Hardy inequality.
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Abstract: In this paper, we propose a fractional map based on the integer-order unified

map. The chaotic behaviour of the proposed map is analysed by means of bifurcations

plots and some chaotic attractors that exist in the behaviour of our fractional map.
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1. Introduction

In 1976 the astronomer and mathematician Hénon proposed a two-dimensional iterated

map as a simplified model of the Poincaré map for the Lorenz equations. This iterated

map reads

H

(
x
y

)
=

(
1− ax2 + by

x

)
. (1)

The map (1) displays a chaotic attractor which appears to be the product of a one-

dimensional manifold by a Cantor set. After Lozi introduced a two-dimensional map in

1978 where he replaced the quadratic term in the Hénon map (1) by a piecewise linear one

[4]

L

(
x
y

)
=

(
1− a | x | +by

x

)
. (2)

This map displays a chaotic attractor for a = 1.7 and b = 0.5.

In the next section we give some fractional discrete-time calculus.

2. Fractional discrete-time calculus

Let a ∈ IR fixed and let INa = {a, a+ 1, a+ 2, ...} denotes the isolated time scale [2]. For

the function u(n), the delta difference operator ∆ is defined as

∆u(n) = u(n+ 1)− u(n).
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Definition 1. [3] Let u : INa −→ IR and v > 0. Then, the fractional sum of v order is

defined by

∆−v
a u(t) =

1

Γ(v)

t−v∑
s=a

(t− σ(s))(v−1) u(s), t ∈ INa+v, (3)

where a is the starting point, σ(s) = s+ 1 and t(v) is the falling function defined in terms

of the Gamma function as

t(v) =
Γ(t+ 1)

Γ(t+ 1− v)
. (4)

Definition 2. [4] For v > 0, v /∈ IN and u(t) defined on INa, the Caputo-like delta

difference is defined by

c∆v
au(t) = ∆−(m−v)

a ∆mu(t)

=
1

Γ(m− v)

t−(m−v)∑
s=a

(t− σ(s))(m−v−1)∆m
s u(s),

where t ∈ INa+m−v, m = [v] + 1.

Theorem 1. [5] For the delta fractional difference equation{
c∆v

au(t) = f(t+ v − 1, u(t+ v − 1))
∆ku(a) = uk,m = [v] + 1, k = 0, . . . ,m− 1,

the equivalent discrete integral equation can be obtained as

u(t) = u0(t) +
1

Γ(v)

t−v∑
s=a+m−v

(t− σ(s))(v−1) × f(s+ v − 1, u(s+ v − 1), t ∈ INa+m,

where

u0(t) =
m−1∑
k=0

(t− a)(a)

k!
∆ku(a).

3. The fractional-order version of the map (2).

The first order difference of (2) can be easily formulated as:{
∆xn = 1− a |xn| − byn − xn,

∆yn = xn − yn.
(5)
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Using the Caputo-like delta difference with d as the starting point, the fractional-order

difference of (5) is given by{
c∆v

ax(t) = 1− a |x(t− 1 + v)| − by(t− 1 + v)− x(t− 1 + v),
c∆v

ax(t) = x(t− 1 + v)− y(t− 1 + v),
(6)

for 0 < v ≤ 1 and t ∈ INd+1−v.

Following Theorem 1, using the discrete kernel function (7):

(t− σ(s))v−1 =
Γ(t− s)

Γ(t− s− v + 1)
, (7)

and assuming that d = 0, the numerical formulas for the fractional map (6) may be obtained

as: 
xn = x0 +

1
Γ(v)

n∑
j=1

Γ(n−j+v)
Γ(n−j+1)

(1− a |xj−1| − byj−1 − xj−1),

yn = y0 +
1

Γ(v)

n∑
j=1

Γ(n−j+v)
Γ(n−j+1)

(|xj−1| − yj−1).
(8)

For v = 1, the discrete fractional map (8) can be reduced to the classical one (2).

Assume v = 0.8, X0 = (0.3, 0.5)′, then we can derive the numerical solutions Xn as in

figure 1.

−1 −0.5 0 0.5 1 1.5

x

Fig.1-Chaotic attractor of the fractional map (8) obtained for a = 1.4, b = −0.4 and
v = 0.8.

4. Conclusion

The chaotic behaviour of the fractional Lozi map is analysed by means of bifurcations
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diagram. Based on the obtained results, we see that the fractional order v has an impact

on the existence and shape of the chaotic behaviour.
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Abstract: The aim of this study is to discuss the dynamics of HIV/AIDS model prosed by

[5]. We have divided the total population into five classes, namely (susceptible individuals,

infective individuals who do not know that they are infected, HIV positive individuals who

know that they are infected and that of the AIDS population). We prove that the pro-

posed model has two distinct equilibria (disease-free equilibrium and the positive endemic

equilibrium).By using the Routh-Hurwitz criterion and the Descartes’ rule of signs, we es-

tablish the local stability of the disease-free equilibrium subject to the basic reproduction

number being smaller than to unity, on the other hand, the endemic equilibrium subject

to the basic reproduction being greater than unity.

We have also discuss the previous model with three controls strategies of condom use u1,

screening of unawar infectives u2 and treatment of unaware u3.
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Thus, the model is given by :

dS

dt
= Q0 − βmS − µS

dI1
dt

= βmS − (u2θ + δ + µ)I1

dI2
dt

= u2θI1 − (δ + µ+ u3π)I2

dA

dt
= δI1 + (δ + u3π)I2 − (α+ µ)A

where

βm =
(1− u1) (β1c1I1 + β2c2I2 + β3c3A)

N
.

The controls strategies aimed at controlling of the spread of HIV/AIDS epidemic.

The objective functional is defined as:

J(u1, u2, u3) =

∫ T

0

(
aI1 + b1u

2
1 + b2u

2
2 + b3u

2
3

)
dt.

Our aim here is to minimize the number of unaware infectives I1, while minimizing the

cost control u12, u2 and u3. Then we seek an optimal control u∗1, u
∗
2 and u∗3 such that

(u∗1, u
∗
2, u

∗
3) = min {J (u1, u2, u3) : u1, u2 and u3 ∈ U} ,

where U is the admissible control set defined by

U = {(u1, u2, u3) : 0 ≤ ui ≤ 1, t ∈ [0, T ] , for i = 1, 2, 3} .
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The Pontryagin’s maximum principle [2] and the existence result of optimal control [1] are

used to characterize the optimal control.

Finally, the numerical simulation of both model i.e with control and without control, shows

that this strategy helps to reduce the number of infected and the cost of control.

Keywords: Dynamical systems; Stability analysis; Optimal control; HIV/AIDS.

References

1. W. H. Fleming and R. W. Rishel, Deterministic and Stochastic Optimal Control,

Springer Verlag, New York, 1975.

2. L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The-

Mathematical Theory of Optimal Processes (Gordon and Breach Science Publish-

ers,1986).

3. V. P. Driessche. J. Watmough, Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission. Biosci, 180 (2002).

53



ACDSOD 21 Bejaia, March 20-23, 2021

4. C. C. Chavez. Z. Feng. W. Huang, On the computation of R0 and its role on

global stability, in mathematical approaches for emerging and re-emerging infectious

diseases: An introduction, IMA. Vol. 125. Springer, (2002).

5. K. O. Okosun. O. D. Makinde. I. Takaidza, Impact of optimal control on the treat-

ment of HIV/AIDS and screening of unaware infectives. Model, 37 (2013).

54



ACDSOD 21 Bejaia, March 20-23, 2021

Existence of solutions for a nonlinear fractional
p-Laplacian boundary value problem
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merzougibtissem@gmail.com

Abstract: The main objective of this paper is to prove the existence of solutions for a

fractional p-Laplacian boundary value problem (P1) involving both the Riemann-Liouville

and the Caputo types fractional derivatives:

(P1)

{
−Dβ

1−

(
ϕp

(
Dα

0+u (t)
))

+ f (t, u (t)) = 0, 1, 0 ≤ t ≤ 1
u (0) = u′ (0) = 0, Dα

0+u(1) = 0

where 1 < α < 2, 0 < β < 1; Dα
0+ , D

β
1−are the standard Riemann-Liouville fractional

derivatives, ϕp(s) = |s|p−2 s, p > 1, ϕ−1
p = ϕq,

1
p
+ 1

q
= 1, u is the unknown function and

f ∈ C([0, 1]× IR, IR). Recently, the study of nonlinear fractional differential equations has

attracted much attention of researchers and different methods have been investigated;

Besides, the p-Laplacian operator boundary-value problems have been studied in terms of

their importance in theory and applications in mathematics, analyzing mechanics, physics

and dynamic systems. However, there are many studies of the existence and uniqueness of

boundary conditions of fractional differential equations with the p-Laplacian operator by

many techniques.

By using the method of lower and upper solutions and the Schauder fixed point theorem,

we prove the existence of solutions of problem (P1).

To overcome the difficulties, we convert the problem (P1) into an equivalent Caputo bound-

ary value problem of order β, then we construct explicitly the upper and lower solutions

of the problem (P1), under some conditions on the nonlinear term f . We use Schauder

fixed point theorem to prove the existence of solutions to the problem (P1).

The method of upper and lower solutions has been applied in the investigation of the ex-

istence of solutions for nonlinear boundary value problems in many works.

Keywords: Fractional p-Laplacian, Boundary value problem, Method of upper and lower

solutions, Existence of solutions.
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Abstract: In this work we introduce an explicit expression of invariant algebraic curves

of the multi-parameter planar Kolmogorov systems (1).
x′ =

dx

dt
= xF (x, y) ,

y′ =
dy

dt
= yG (x, y) ,

(1)

where F , G are two functions in the variables x and y. then we proved that these systems

are integrable and introduced an explicit expression for a first integral.

Keywords: Kolmogorov System, First Integral, Periodic Orbits, Limit Cycle

The autonomous differential system on the plane given by
x′ = x

(
1 + ax2 + bxy + cy2 − (a+ 1)x4 − bx3y−

(c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4

)
,

y′ = y

(
(1 + nx2 +mxy + sy2 − (a+ 1)x4 − bx3y−

(c+ n+ 2)x2y2 −mxy3 − (s+ 1)y4),

)
 (2)

where a, b, c, n,m and s are real constants, the derivatives are performed with respect to

the time variable. Is frequently used to model the iteration of two species occupying the

same ecological niche. There are many natural phenomena which can be modeled by the

Kolmogorov systems such as mathematical ecology and population dynamics chemical re-

actions, plasma physics, hydrodynamics, economics, etc. In the qualitative theory of planar

dynamical systems, one of the most important topics is related to the second part of the

unsolved Hilbert 16th problem.
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Main result

Our main result is contained in the following theorem.

Theorem . Consider a multi-parameter planar Kolmogorov system (2), then the following

statements hold.

(h1) The curve U(x, y) = xy(nx2+mxy+sy2)−xy(ax2+bxy+cy2) is an invariant algebraic

curve of system (2).

(h2) If f3(θ) ̸= 0, then the system (2) has the first integral

H(x, y) =
exp

( ∫ arctan y
x

0
D(w)dw

)
+ (x2 + y2 − 1)

∫ arctan y
x

0
exp(−

∫ s

0
D(w)dw)C(s)ds

x2 + y2 − 1
.

Moreover the phase portrait of the differential system (2), in Cartesian coordinates is given

by

x2 + y2 =
h+ exp

( ∫ arctan y
x

0
D(w)dw

)
−
∫ arctan y

x

0
exp(−

∫ s

0
D(w)dw)C(s)ds

h−
∫ arctan y

x

0
exp(−

∫ s

0
D(w)dw)C(s)ds

.

where h ∈ IR.

(h3) If f3(θ) = 0 for all θ ∈ IR, then the system (2) has the first integral H(x, y) = y
x
.

Moreover the phase portrait of the differential system (2), in Cartesian coordinates is given

by y − hx = 0, where h ∈ IR.
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Abstract: The aim of this work [2] is to study a general system of difference equations

defined by continuous and homogeneous functions of degree zero. We establish results on

local stability of the unique equilibrium point and to deal with the global attractivity, and

so the global stability, some general convergence theorems are provided. Necessary and

sufficient conditions on existence of prime period two solutions of our system are given.

Also, a result on oscillatory solutions is proved. As applications of the obtained results,

concrete models are investigated. Our system generalize some existing works in the liter-

ature, see for example [1] and our results can be applied to study new models of systems

of difference equations.

Keywords: Homogeneous functions, systems of difference equations, local and global sta-

bility, periodicity, oscillatory solutions.

Introduction

In the last three decades, a lot of studies are devoted to the subject of difference equations.

A huge number of models of difference equations investigated by researchers are defined by

particular homogeneous functions. In the present talk, we will present our obtained results

[2] on the following general system of difference equations defined by

xn+1 = f(yn, yn−1), yn+1 = g(xn, xn−1) (1)

where n ∈ IN0, the initial values x−1, x0, y−1 and y0 are positive real numbers, the functions

f, g : (0,+∞)2 → (0,+∞) are continuous and homogeneous of degree zero.

Clearly if we take y−i = x−i, i = 1, 2, and g ≡ f , then the System (1), will be

xn+1 = f(xn, xn−1). (2)

The behavior of the solutions of Equation (2), can be founded in [1]. In particular, our

results generalize and complete those in [1]. Also, for particular choices of the functions f
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and g, we can recover new difference equations and systems.

1. On the stability of the unique equilibrium point

In this part, we give conditions for the stability of the unique equilibrium point of of Sys-

tem (1).

Theorem 1.1. Assume that f(u, v), g(u, v) are C1 on (0,+∞)2. The equilibrium point

(x, y) = (f(1, 1), g(1, 1))

of System (1) is locally asymptotically stable if∣∣∣∣∂f∂u (1, 1). ∂g∂u(1, 1)
∣∣∣∣ < f(1, 1).g(1, 1)

4
.

In order to prove that the equilibrium point is a global attractor, we will prove the follow-

ing general convergence theorems.

Theorem 1.2. Consider System (1). Assume that the following statements are true:

1. H1: There exist a, b, α, β ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v), g(u, v) are increasing in u for all v and decreasing in v for all u.

3. H3: If (m1,M1,m2,M2) ∈ [a, b]2 × [α, β]2 is a solution of the system

m1 = f(m2,M2), M1 = f(M2,m2), m2 = g(m1,M1), M2 = g(M1,m1)

then

m1 =M1, m2 =M2.

Then every solution of System (1) converges to the unique equilibrium point

(x, y) = (f(1, 1), g(1, 1)).

Theorem 1.3. Consider System (1). Assume that the following statements are true:
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1. H1: There exist a, b, α, β ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v), g(u, v) are decreasing in u for all v and increasing in v for all u.

3. H3: If (m1,M1,m2,M2) ∈ [a, b]2 × [α, β]2 is a solution of the system

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(M1,m1), M2 = g(m1,M1)

then

m1 =M1, m2 =M2.

Then every solution of System (1) converges to the unique equilibrium point

(x, y) = (f(1, 1), g(1, 1)).

Theorem 1.4. Consider System (1). Assume that the following statements are true:

1. H1: There exist a, b, α, β ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v) is increasing in u for all v and decreasing in v for all u, however g(u, v)

is decreasing in u for all v and increasing in v for all u.

3. H3: If (m1,M1,m2,M2) ∈ [a, b]2 × [α, β]2 is a solution of the system

m1 = f(m2,M2), M1 = f(M2,m2), m2 = g(M1,m1), M2 = g(m1,M1)

then

m1 =M1, m2 =M2.

Then every solution of System (1) converges to the unique equilibrium point

(x, y) = (f(1, 1), g(1, 1)).

Theorem 1.5. Consider System (1). Assume that the following statements are true:
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1. H1: There exist a, b, α, β ∈ (0,+∞) such that

a ≤ f(u, v) ≤ b, α ≤ g(u, v) ≤ β, ∀(u, v) ∈ (0,+∞)2 .

2. H2: f(u, v) is decreasing in u for all v and increasing in v for all u, however g(u, v)

is increasing in u for all v and decreasing in v for all u.

3. H3: If (m1,M1,m2,M2) ∈ [a, b]2 × [α, β]2 is a solution of the system

m1 = f(M2,m2), M1 = f(m2,M2), m2 = g(m1,M1), M2 = g(M1,m1)

then

m1 =M1, m2 =M2.

Then every solution of System (1) converges to the unique equilibrium point

(x, y) = (f(1, 1), g(1, 1)).

Now, we are able to state our result on the global stability of the unique equilibrium point

(x, y) = (f(1, 1), g(1, 1)) of System (1).

Theorem 1.6. Under the assumptions of Theorem 1.1 and the assumptions of Theo-

rem 1.2 or Theorem 1.3 or Theorem 1.4 or Theorem 1.5, the equilibrium point (x, y) =

(f(1, 1), g(1, 1)) is globally stable.

2. Existence of periodic and oscillatory solutions

Here we present some results on existence of periodic and oscillatory solutions.

Theorem 2.1. Assume that (α − 1)(β − 1) ̸= 0. Then, System (1) have a prime period

two solution

..., (αp, βq), (p, q), (αp, βq), (p, q), ...

if and only if

f(1, β) = αf(β, 1), g(1, α) = βg(α, 1),

where

p = f(β, 1), q = g(α, 1).

Theorem 2.2. Let (xn, yn)n=−1,0,... be a solution of System (1) and assume that f(x, y),

g(x, y) are decreasing in x for all y and are increasing in y for all x.
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1. If

x0 < x, x−1 > x, y0 < y, y−1 > y,

then we get

x2n < x, x2n−1 > x, y2n < y, y2n−1 > y, n ∈ IN0.

That is for both (xn)n≥−1 and (yn)n≥−1 we have semi-cycles of length one of the form

+−+−+− · · · .

2. If

x0 > x, x−1 < x, y0 > y, y−1 < y,

then we get

x2n > x, x2n−1 < x, y2n > y, y2n−1 < y, n ∈ IN0.

That is for both (xn)n≥−1 and (yn)n≥−1 we have semi-cycles of length one of the form

−+−+−+ · · · .
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Abstract:

The present work discusses a prey-predator model where the prey species are subjected to

a harvest. The model is a modified version from the classic Lotka-Volterra predator-prey

model. The equilibria of the model are obtained and the dynamical behaviors of the pro-

posed system are examined. Simulations of the model are performed.

Keywords: Predator-prey model; Harvesting; positive equilibria; limit cycle.

Introduction

Many researchers are interested to the dynamic of predator-prey interactions models and

explored the processes that affect them. The interaction between a predator and prey may

be modeled by the classical Lotka-Voltera model{
ẋ = rx(1− x

k
)− axy

ẏ = y(−d+ cx)
(1)

Where x and y represent the prey and predator species, respectively; r, k, a, c, and d are

positive constants. In the absence of the predation, the prey grows logistically with intrin-

sic growth rate r and carrying capacity k. In the presence of the predation, the prey species

decreases at a rate proportional to the functional response ax, where a presents the rate

of predation. The factor c denotes the rate of growth of the predator due to its predation.

Without the prey, no predation occurs and the predator species decreases exponentially

with mortality rate d.

To enrich the model (1), several researchers modified the nonlinear functional response and

added some other elements such as, Pollution, toxicity, refuge,...etc.

As harvesting is an important and effective method to prevent and control the explo-

sive growth of predators or prey when they are enough, it is reasonable and necessary
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to introduce the harvest of populations into models. We then focus in this work on the

predator-prey model with harvest.

1 Model formulation

Using model (1) as our baseline model, we assume that harvesting takes place, but only the

prey population is under harvesting and introduce harvesting function H(x) of the prey to

prey-predator model (1) for discussing its dynamical features. The interactive dynamics

are governed by the following system{
ẋ = rx(1− x

k
)− axy −H(x)

ẏ = y(−d+ cx)
(2)

Where

H(x) =

{
mx if 0 ≤ x ≤ x0
h if x > x0

We assume that the harvesting rate is proportional to the predator population size until

it reaches a threshold value. The harvesting rate will then be kept as a constant. Denote

the harvesting threshold value as h = mx0.

2 Preliminary results

We can show that solutions of system (2) with positive initial conditions are all positive

for t > 0 and uniformly bounded. Thus the following set:

S =

{
(x, y) ∈ IR2

+, cx+ ay ≤ ck

4rd
(r + d)2

}
is positive invariant for system (2).

We are only interested in analyzing the solutions of system (2) in the first quadrant

IR2
+. The equilibria of this system in the subregion of S with 0 ≤ x ≤ x0 are

P0 = (0, 0), P1 = (k(1− m
r
), 0), P ∗ =

(
d
c
, r
a
(1− d

ck
)− m

a

)
Theorem 1.

1) Equilibrium P0 is instable if m > r, and stable if m < r.
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2) Equilibrium P1 is instable if m < r(1 − d
ck
), and stable if m > r(1 − d

ck
); when

m = r(1− d
ck
) there may exist a bifurcation at P1.

3) The positive equilibrium P ∗ of system (2) is globally asymptotically stable if m <

r(1− d
ck
) and x0 ≥ d

c
.

We denote h1 =
rk
4
, h2 =

rd
c

(
1− d

ck

)
, h3 = rx0

(
1− x0

k

)
, ĥ = rd2

kc2
.

Proposition 1.

In the subregion of S with x > x0, system (2) has,

1) No positive equilibrium, if h > h1.

2) A unique positive equilibrium q0 = (x0, 0) with x0 =
k

2
, if h = h1

3) Two positive equilibria q1 = (x1, 0) and q2 = (x2, 0) with

x1 =
rk−

√
rk(rk−4h)

2r
and x2 =

rk+
√

rk(rk−4h)

2r
,

if h2 < h < h1 and h3 < h

4) Three positive equilibria q1 = (x1, 0), q2 = (x2, 0) and q
∗ = (x∗, y∗) with

x1 =
rk−

√
rk(rk−4h)

2r
, x2 =

rk+
√

rk(rk−4h)

2r
,

x∗ = d
c

and y∗ = r
a

(
1− d

ck

)
− ch

ad
,

if h < h1, x0 < d
c

and h3 < h < h2.

Theorem 2.

1) q1 is an unstable node if h > h2 and q1 is a saddle point if h < h2.

2) If h < h2, then q2 is a saddle point, when h > h2 is stable node.

3) If ĥ < h < h2, q
∗ is an unstable focus or node, and when h < min

{
h2, ĥ

}
, q∗ is a stable

focus or node.

We have the main result of this work:

Theorem 3.

Suppose ĥ < h < h2, then system (2) has at least a limit cycle which encircles q∗.

Conclusion
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In this work, we have performed a mathematical analysis to our model, we thus examined

the dynamics of the proposed model, we studied the existence and the global stability of

the equilibrium states. We have also shown that model (??) has at least one limit cycle.

Finally, a numerical simulation is performed to verify the theoretical results obtained.
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6. Rebiha Benterki. Bordj Bou Arréridj University, Algeria.
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Résumé : Ce travail est consacré à l’étude d’un problème elliptique de type Bitsadze-

Samarskii dans le cadre des espaces de Banach UMD. Ici, on trouve des résultats concer-

nant l’existence, l’unicité et la régularité de la solution. On définit deux types de solutions

(solution stricte et semi-stricte) et on donne des conditions nécessaires et suffisantes sur

les données pour obtenir ces résultats.

Mots clés: Conditions aux limites non locales, semi-groupe analytique, puissance imagi-

naire d’opérateur, espace UMD.

Dans ce travail, on étudie un problème elliptique aux limites non locales de type

Bitsadze-Samarskii dans le cadre Lp.

Soit x0 ∈ [0, 1[, on considère le problème suivant:

(P1) :


−u′′(x) + Au(x) = f(x), p.p. x ∈]0, 1[

u(0) = u0,

u(1)−Hu(x0) = u1,x0 ,

o f ∈ Lp(0, 1;X), 1 < p < +∞, X est un espace de Banach complexe UMD, u0 et u1,x0

sont des éléments de X, A est un opérateur linéaire fermé de domaine D(A) dans X et H

est un opérateur linéaire fermé de domaine D(H) dans X.

Allaberen Ashyralyev [1] s’est intéressé (en 2008) au problème (P1), pour H = αI, (α > 0),

dans le cadre des espaces de Hlder et a montré que ce problème est bien posé, en vérifiant

l’inégalité de coercivité.

On cherche (sous quelques hypothèses) deux types de solutions:

- Solution semi-stricte, c’est à dire u vérifie (P1) et:

u ∈ W 2,p(0, 1− ε;X) ∩ Lp(0, 1− ε;D(A)) et u′ ∈ Lp(0, 1;X).
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- Solution stricte, c’est à dire u vérifie (P1) et:

u ∈ W 2,p(0, 1;X) ∩ Lp(0, 1;D(A)).

La méthode est basée essentiellement sur la constuction d’une représentation de la solu-

tion, l’utilisation des semi-groupes, les domaines fractionnaires des opérateurs, les espaces

d’interpolation et la théorie des sommes d’opérateurs en s’inspirant du travail de H. Ham-

mou et al [2].

On trouve finalement, des résultats concernant l’existence, l’unicité et la régularité de la

solution de ce problème. Voir B. Hamdi et al [3].
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Abstract: We study the existence of solutions for the third-order boundary value problem

(BVP) having the following form

−u′′′
(t) + f(t, u(t)) = 0, 0 < t < 1,

u(0) = u
′
(0) = u

′′
(1) = 0.

The boundary value problem is very similar type considered. It is assumed that f is a

function from the space C([0, 1] × IR, IR). The main tool used in the proof is the Leray-

Schauder nonlinear alternative. As an application, we also given an example to illustrate

the results obtained.

Keywords: Green’s function, Nontrivial solution, Leary-Schauder nonlinear alternative,

Fixed point theorem, Boundary value problem.

1. Preliminaries

We consider the BVP under the assumption that f ∈ C([0, 1]× IR, IR). E = C3[0, 1] with

the norm ∥u∥ = max |u|∞ where |u|∞ = maxt∈[0,1] |u(t)| for any u ∈ E.

Lemma 1. Let y ∈ C([0, 1]). Then the three-point BVP

−u′′′
(t) + y(t) = 0, 0 < t < 1,

u(0) = u
′
(0) = u

′′
(1) = 0,

is equivalent to the integral equation

u(t) =

∫ 1

0

G(t, s)y(s)ds
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where G : [0, 1]× [0, 1] → [0,∞) denotes the Green function given by

G(t, s) =
1

2

{
t2, 0 ≤ t ≤ s ≤ 1,
s(2t− s), 0 ≤ s ≤ t ≤ 1,

Define the integral operator T : E → E by

Tu(t) =
1

2

∫ t

0

s(2t− s)y(s)ds+
1

2

∫ 1

t

t2y(s)ds.

Lemma 2. Let E be a Banach space and Ω be a bounded open subset of E, 0 ∈ Ω.

T : Ω → E be a completely continuous operator. Then, either

(i) there exists u ∈ ∂Ω and λ > 1 such that T (u) = λu, or

(ii) there exists a fixed point u∗ ∈ Ω of T .

2. Existence of nontrivial solutions

In this section, we present two theorems for prove the existence of a nontrivial solution for

the BVP. Suppose that f ∈ C([0, 1]× IR, IR).

Theorem 1. Suppose that f(t, 0) ̸= 0 and there exist nonnegative functions k, h ∈ L1[0, 1]

such that

|f(t, u)| ≤ k(t)|u|+ h(t), a.e. (t, u) ∈ [0, 1]× IR,

and ∫ 1

0

sk(s)ds < 1.

Then the BVP has at least one nontrivial solution u∗ ∈ E.

Theorem 2. Suppose that f(t, 0) ̸= 0, and there exist nonnegative functions k, h ∈
L1[0, 1] such that

|f(t, u)| ≤ k(t)|u|+ h(t), a.e. (t, u) ∈ [0, 1]× IR.

Assume that one of the following conditions holds

(1) There exists a constant α > −2 such that

k(s) ≤ (2 + α)sα, a.e. s ∈ [0, 1],
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meas{s ∈ [0, 1] : k(s) < (2 + α)sα} > 0.

(2) There exists a constant α > −1 such that

k(s) ≤ (1 + α)(2 + α)(1− s)α, a.e. s ∈ [0, 1],

meas{s ∈ [0, 1] : k(s) < (1 + α)(2 + α)(1− s)α} > 0.

(3) There exist a constant p > 1 such that

∫ 1

0

k(s)pds < [(1 + q)1/q]p, (
1

p
+

1

q
= 1).

Then the BVP has at least one nontrivial solution u∗ ∈ E.

Example . Consider the following problem −u′′′
+ t

7
|u| cos

√
u+ t2

4
u2 + tet + 1 = 0, 0 < t < 1,

u(0) = u
′
(0) = u

′′
(1) = 0.

Set

f(t, u) =
t

7
|u| cos

√
u+

t2

4
u2 + tet + 1,

k(t) =
t

3
+ t2, h(t) = tet + 1.

It is easy to prove that k, h ∈ L1[0, 1] are nonnegative functions, and

|f(t, u)| ≤ k(t)|u|+ h(t), a.e. (t, u) ∈ [0, 1]× IR.

Moreover, we have

M =

∫ 1

0

sk(s)ds =

∫ 1

0

s(
s

3
+ s2)ds =

1

9
+

1

4
< 1.

Hence, by Theorem 1, the BVP (1) has at least one nontrivial.

solution u∗ in E.
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Abstract: In the work i wish to expose, we introduce a new class of generalized monotone

(λ−α) -nonexpansive mappings in which fixed point existence results and weak and strong

convergence results are established.

We establish these results in the Banach spaces for the iteratif processes of Krasnosel-

skii and Mann. We have also considered an application to the space L1([0, 1]) which has

the particularity to be convex and not to be uniformly convex. In fact, in this work, we

first established the theorems of the existence of fixed points in uniformly convex Banach

spaces in all directions and, on the other hand, a strong and weak convergence for the

iterative sequence of Krasnoselskii. Finally, we have finished this work with an application

to Lebesgue’s space L1([0, 1]). Thus our results generalize and unify the relative results in

the literature.

Key-words: Fixed point, Krasnoselskii iteration process, generalized monotone (λ − α)

-nonexpansive mappings.
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Karima Ait-Mahiout (1), Smail Djebali (2)
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Résumé : Ce papier est consacré à l’étude de l’existence d’une multiplicité de solutions

pour un problème aux limites impulsif en utilisant la théorie de Morse et les groupes cri-

tiques à l’infinie.

Mots clés: Problèmes aux limites impulsif, demi-droite réelle, points critiques, groupes

critiques, théorie de Morse.

Introduction

Dans ce travail nous nous intéressons à l’étude du problème suivant
−(p(t)u′(t))′ = q(t)f(t, u(t)), t ̸= tj, j ∈ {1, 2, . . .}, t > 0,

u(0) = u(+∞) = 0,
∆(p(tj)u

′(tj)) = h(tj)Ij(u(tj)), j ∈ {1, 2, . . .},
(1)

o f ∈ C([0,+∞[×IR, IR), et satisfait:

|f(t, u)| ≤ c(1 + |u|α−1),∀t ≥ 0, u ∈ IR (2)

pour c > 0 et α ∈ (2,+∞), avec f(t, 0) = 0,∀t ∈ IR+ q ∈ L1((0,+∞), IR+), q > 0, p.p.,

et tels que

M1 =

∫ +∞

0

(∫ +∞

t

ds

p(s)

)
dt <∞ et M2 =

∫ +∞

0

q(t)

(∫ +∞

t

ds

p(s)

)
dt <∞.
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Ij ∈ C(IR, IR), j = {1, 2, . . .} sont les fonctions impulsives et t0 = 0 < t1 < t2 < . . . <

tj < . . . < tm → +∞, lorsque m → +∞, sont les points d’impulsions qui sont en nombre

infinie.

Nous supposerons que la fonction Ij satisfait la condition suivante.

∃k > 0, σ ∈ (2,+∞); |Ij(u)| ≤ k|u|σ,∀u ∈ IR. (3)

Posons

△(p(tj)u
′(tj)) = p(t+j )u

′(t+j )− p(t−j )u
′(t−j ),

o u′(t+j ) = lim
t
>→tj

u′(t) et u′(t−j ) = lim
t
<→tj

u′(t) représente les limites à droite et à gauche de u′

at tj, respectivement. Finalement h : IR+ → IR+ est une fonction tel que
∑∞

j=1 |h(tj)| <∞.

Premier résultat

Supposons que les conditions suivantes sont satisfaites (H1) Il existe δ > 0, µ ∈ (0, 2) et

c0 > 0 tel que

F (t, u) ≥ c0|u|µ, pour t ≥ 0, |u| ≤ δ.

(H2) (i) lim|u|→∞(F (t, u)− 1
2
λ1|u|2) = −∞ uniformément pour t ∈ [0,+∞)

(ii) ∃Ĉ ≥ 0, F (t, u) − λ1

2
|u|2 ≤ Ĉ, ∀t ∈ [0,+∞), ∀u ∈ IR (I1) ∃C ′ ∈ IR,

∫ u

0
Ij(s)ds ≥

C ′,∀u ∈ IR. Alors le problème (1) admet au moins une solution non triviale.

Deuxième résultat

En plus des conditions (H2) et (I1), supposons que les conditions suivantes sont satisfaites:

(H3) Ils existent δ > 0, λ ∈ (λ1, λ) tel que

λ1|u|2 ≤ 2F (t, u) ≤ λ|u|2 pour tout t ∈ [0,+∞), |u| ≤ δ

(I2) ∃δ > 0,
∫ u

0
Ij(s)ds = 0, ∀u ≤ δ.

Then the problem (1) has at least two nontrivial solution.

Conclusion

La théorie de Morse nous a permit d’obtenir deux ou trois solutions en tenant compte de

la solution triviale.
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Abstract: In this paper, we calssify the global phase portraits of all quadratic polynomial

differential systems having the invariant reducible cubic curve (y−k)(x2+y2−1) = 0. We

prove that there are 12 different topological phase portraits for such quadratic polynomial

differential systems.

Keywords: Phase portrait, Poincaré disc, Reducible cubic.

Introduction

Let IR[x; y] be the ring of real polynomials in the variables x and y. In this work we are

interesting in studying the quadratic polynomial differential systems which are written as

ẋ = P (x, y) = P0 + P1 + P2, ẏ = Q(x, y) = Q0 +Q1 +Q2. (1)

where Pi and Qi are real polynomials of degree i where i = 0, 1, 2, in the variables (x; y)

and P 2
2 +Q2

2 ̸= 0.

This kind of differential systems is the simplest nonlinear polynomial systems, which

appear in several branches of science, mainly in chemistry, physics, in population dynamics,

hydrodynamics, biology, etc.

From 1960’s, many researchers have been interesting in classifying the global phase

portraits of quadratic systems which are not easy to be studied. In this work; we study

the phase portraits of the quadratic polynomial differential systems

ẋ =
1

2
(a− 1)x2 +

1

2
(a− 3)y2 + ky +

1− a

2
,

ẏ = xy − kx.

(2)

These differential systems having the reducible cubic invariant algebraic curve of degree 3

H(x, y) = (y − k)(x2 + y2 − 1) = 0
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Our main result is the following

Theorem. The polynomial differential systems (2) with k ̸= 0 have 12 global phase

portraists in the Poincaré disc topologically non equivalent.

Figure 3: Figure 4: Figure 5:

Finite and infinite singularities

For the quadratic systems 2 their singular points are characterized in the following

result.

Proposition . The following statements hold for the quadratic systems 2.

1 If a ∈ (2−
√
1− k2, 2+

√
1− k2) and k ∈ (0, 1), systems (2) have two hyperbolic finite

singular points, a stable node at (−
√
1− k2, 0) and an unstable node at (

√
1− k2, 0).

In the local chart U1 it have one infinite singularity at (0, 0) which is a saddle, and

the origin of the local chart U2 is not a singularity of these systems.

2 If a = 2 −
√
1− k2 and k ∈ (0, 1), systems (2) have three finite singular points:

a stable node at (−
√
1− k2, 0), an unstable node at (

√
1− k2, 0) and a nilpotent

singularity at
(
0, 1−

√
1−k2

k

)
, and its local phase portrait formed by two hyperbolic

sectors. In the local chart U1 this systems have one infinite singularity at (0, 0) which

is a saddle and the origin of the local chart U2 is not a singularity of these systems.

3 If a = 2 and k = 1, system (2) has one finite singularity at (0, 1) which is a linearly

zero, and its local phase portrait formed by two elliptic sectors. In the local chart U1
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it has one infinite singularity at (0, 0) which is a saddle and the origin of the local

chart U2 is not a singularity of this system.
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Abstract: This paper is devoted to provide the maximum number of crossing limit cycles

of two families of discontinuous piecewise linear differential systems. More precisely, we

prove that the systems formed by two zones, such that, in one zone we define a linear

Hamiltonian differential system without equilibrium point and in the second zone we de-

fine a linear differential center, can exhibit at most three crossing limit cycles having two

intersection points with the conics of separation.

After we prove that the systems formed by three zones, where, in two no–adjacent zones

we define the same class of differential system, and in the third zone we define another

class, can exhibit three crossing limit cycles having four or two or four simultaneously

intersection points with the conics of separation.

Keywords: limit cycles, discontinuous piecewise linear differential systems,linear centers,

linear Hamiltonian systems, conics.

One of the main and difficult problems in the qualitative theory of a piecewise linear

differential systems is the existence and the determination of limit cycles.

We recall that a limit cycle of a differential system is an isolated periodic orbit in the set of

all periodic orbit of this system. Piecewise linear differential systems revent to Andronov,

Vitt and Khaikin. Owing to the simplicity of this kind of differential systems, researchers

had given a big interest on studying them and they have extensively a large relevance in

the domain of engenering sciences, for example, we can modeled key of component in even

simple electronic circuit, also the Diodes and transistors as a piecewise linear differential

systems.

Even now, many papers devoted to study the existence and the number of limit cycles of

these systems when the curve of separation is either a straight line, or an algebraic curves,
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such that a conic or reducible or irreducible cubic curves, see [1,2].

Especially, in [3] Benterki and Llibre studied the existence of limit cycles of planar piece-

wise linear Hamiltonian systems without equilibrium points, where they proved that if

these systems are separated by a parabola, a hyperbola or an ellipse; they can have at

most 2, 3 or 3 crossing limit cycles, respectively.

In [4] Damene and Benterki provided the maximum number of crossing limit cycles of two

different families of discontinuous piecewise linear differential systems separated by a cubic

curves.

In our paper we are going to consider two families of planar linear differential systems,

the first one is Hamiltonians without equilibrium points and the second one is a family of

centers, and the curves of separation curve are conics.
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Laboratoire Mathématiques Appliquées (LMA) Université Badji Mokhtar Annaba
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Résumé : Dans ce travail, en utilisant la théorie de moyennisation du premier et du

deuxime ordre, nous étudions le nombre maximal de cycles limites qui bifurquent des orbites

périodiques du centre linéaire d’une classe de systémes différentiels de Kukles généralisée.

Mots clés: théorie de moyennisation, Systme différentielle de Kukles, cycle limite.

Introduction

L’un des principales sujets dans la théorie des équations différentielles est l’étude des cycles

limites : leur existence, leur nombre et leur stabilité. Un cycle limite d’une équation

différentielle est une orbite périodique isolée dans l’ensemble de tout les orbites périodiques

de l’équation différentielle. La seconde partie du 16ème problème d’Hilbert est reliée au

le nombre maximum des cycles limites d’un champ vecteur polynomial ayant un degré

fixé. Ce problème et la conjecture de Riemann sont les seuls deux problèmes dans la

liste d’Hilbert qui n’ont pas été résolus. Ici on considère un cas très particulier du 16ème

problème d’Hilbert. On étudie la borne supérieure du système polynomial généralisé de

Kukles {
·
x = −y
·
y = Q(x, y),

(1)

où Q(x, y) est le polynôme avec des coefficients réels du degré n.

Kukles, en 1944 a introduit le système différentiel :
·
x = −y
·
y = x+ a1x

2 + a2xy + a3y
2 + a4x

3

+a5x
2y + a6xy

2 + a7y
3,

(2)

et a donné la condition nécessaire et suffisante pour que le système ait un centre à l’origine.

Ce système cubique sans le terme y3 est appelé réduit.
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Dans [1], Llibre et Mereu ont étudiés le nombre maximum de cycles limites des systèmes

différentielles polynomiales de Kukles.{
ẋ = y
ẏ = −x−

∑
k ≥1

εk
(
f k
n (x) + gkm (x) y + hkl (x) y

2 + d k
0 y

3
)
, (3)

où pour chaque k les polynômes f k
n (x) , gkm (x) et hkl (x) ont respectivement les degrés n,

m et l, d k
0 ̸= 0 est un nombre réel et ε est un petit paramètre.

Dans ce travail, on a étudié le nombre maximum de cycles limites donné par la théorie de la

moyennisation du premier et seconde ordre, qui peuvent bifurquer des orbites périodiques

du centre linéaire {
ẋ = y
ẏ = −x, (4)

perturbé dans la classe des systèmes différentiels polynomiaux généralisés de Kukles suiv-

ante : {
ẋ = y
ẏ = −x− f(x)− g(x)y − h(x)y2 − l(x)y3,

(5)

où f(x) = εf1(x) + ε2f2(x), g(x) = εg1(x) + ε2g2(x), h(x) = εh1(x) + ε2h2(x) et l(x) =

εl1(x) + ε2l2(x) pour chaque k = 1, 2 les polynômes fk(x),gk(x)

,hk(x) et lk(x) ont respectivement les degrés n1, n2, n3 et n4, et ε est un petit paramètre.

.

Résultats principaux:

Nos résultats sont les suivants :

Theorme 1. le nombre maximum de cycles limites des systèmes différentiels polynomi-

aux de Kukles (5) bifurquant des orbites périodiques du centre linéaire (4), en utilisant la

théorie de moyennisation.

a) cas du premier ordre est :

max
{[n2

2

]
,
[n4

2

]
+ 1
}
.

b) cas du second ordre est :

max
{[n2

2

]
,
[n4

2

]
+ 1,

[n1

2

]
+

[
n2 − 1

2

]
,
[n1

2

]
+

[
n4 − 1

2

]
+ 1,
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[
n1 − 1

2

]
+ µ,

[
n2 − 1

2

]
+
[n3

2

]
+ 1,

[n3

2

]
+

[
n4 − 1

2

]
+ 2,

[
n3 − 1

2

]
+ µ+ 1

}
,

où µ = min
{[

n2

2

]
,
[
n4

2

]
+ 1
}
et [.] désigne la fonction partie entière.

Références

1. J. Llibre and A.C. Mereu, Limit cycles for generalized Kukles polynomial differential

systems, Nonlin. Anal. Theo. Meth. Appl., no.4 vol.74, (2011), 1261–1271.

2. T. Chen and J. Llibre, Limit cycles of a second-order differential equation, Applied

Mathematics Letters, vol.88, (2019), 111–117.
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Résumé

Russell.A. Smith a développé une méthode de réduction lui permettant de ramener l’étude

de certains aspects d’une équation différentielle ordinaire dans IRn à l’étude de ces mêmes

aspects à une équation différentielle ordinaire dans IRn dite projection de Smith. Dans ce

travail nous présentons cette méthode de réduction et donner une application à un système

differentielles d’ordre trois.
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Abstract: In this work we present a family of planar polynomial differential systems of

degree 2n+ 1 with n ∈ IN∗, then we prove that these systems are integrable and we intro-

duce an explicit expression of a first integral. Moreover, we determine sufficient conditions

for the existence of an explicit algebraic or non-algebraic limit cycle.

Keywords: First integral, algebraic and non-algebraic limit cycle, planar polynomial dif-

ferential system.

Introduction

In the qualitative theory of autonomous and planar differential systems, the study of limit

cycles is very attractive because of their relation with the applications to other areas of

sciences, see for instance [4]. Nevertheless, most of researchers on that domain focus their

attention on the number, stability and location in the phase plane of the limit cycles for

the system of degree n = max{degP, degQ}

ẋ = dx
dt

= P (x, y)

ẏ = dy
dt

= Q (x, y)
(1)

Where P (x, y) and Q(x, y) are coprime polynomials of IR[x, y]. A limit cycle of system

(1) is an isolated periodic solution in the set of all periodic solutions of system (1). If a

limit cycle is contained in an algebraic curve of the plane, then we say that it is algebraic,

otherwise it is called non-algebraic. In general, it is not easy to distinguish when a limit

cycle is algebraic or not, see for example [1,2,3,5]. We recall that an algebraic curve defined
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by U(x, y) = 0 is an invariant curve for (1) if there exists a polynomial K(x, y) called the

cofactor such that

P (x, y)
∂U

∂x
+Q(x, y)

∂U

∂x
= K(x, y)U(x, y).

System (1) is integrable on an open set Ω of IR2 if there exists a non constant C1

function H : Ω → IR, called a first integral of the system on Ω , which is constant on the

trajectories of the system (1) contained in Ω, i.e. if

dH (x, y)

dt
= P (x, y)

∂H (x, y)

∂x
+Q

∂H (x, y)

∂y
≡ 0

in the points of Ω. Moreover, H = h is the general solution of this equation, where h is an

arbitrary constant. It is well known that for differential systems defined on the plane IR2

the existence of a first integral determines their phase portrait.

In this work we are interested in studying the integrability and the limit cycles of family

of polynomial differential system of the form{
ẋ = bx+ (ax− y) (x2 + y2)

n
+ (cx− y)R2n (x, y)

ẏ = by + (ay + x) (x2 + y2)
n
+ (x+ cy)R2n (x, y)

(2)

where a, b, c are real parameters and R2n(x, y) is a homogeneous polynomial of degree 2n.

System (2) can be written in polar coordinates (r, θ) defined by x = r cos θ, y = r sin θ, as{
ṙ = f (θ) r2n+1 + br,

θ̇ = g (θ) r2n,
(3)

where f (θ) = a+ cR2n (cos θ, sin θ), g (θ) = R2n (cos θ, sin θ) + 1.

Main result

As a main result, we shall prove the following theorem.

Theorem:

Consider a polynomial differential system with homogeneous nonlinearity (2). Then the

following statements hold.

a) The curve F (x, y) =
(
R2n + (x2 + y2)

n)
(x2 + y2) is an invariant algebraic curve of
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system (2).

b) If g(θ) ̸= 0 for all θ ∈ [0, 2π),then system (2) has the first integral

I (x, y) =
(
x2 + y2

)
e−2n

∫ arctan
y
x

0
f(s)
g(s)

ds − 2n

∫ arctan y
x

0

b

g (u)
e−2n

∫ u
0

f(s)
g(s)

dsdu

c) If g(θ) vanishes for some θ ∈ [0, 2π), then system (2) has no periodic limit cycles.

d) If g(θ) ≡ w + 1 for all θ ∈ [0, 2π) ( w is an constant)and (a+ cw) b < 0, then system

(2) has a unique algebraic limit cycle whose expression is

(
x2 + y2

)n
+

b

a+ cw
= 0

e) If and R2n (cos θ, sin θ) > 0 for all θ ∈ [0, 2π),and one of the following conditions is

satisfied: (i) If a < 0, c ≤ 0, b > 0

(ii) if a > 0, c ≥ 0, b < 0

Then system (2) has a unique non algebraic limit cycle whose expression in polar coordi-

nates (r, θ) defined by x = r cos θ and y = r sin θ , is

r(θ, r∗) = e
∫ θ
0

f(s)
g(s)

ds

(
r2n∗ + 2n

∫ θ

0

b

g (u)
e−2n

∫ u
0

f(s)
g(s)

dsdu

) 1
2n

,

Where

r2n∗ =
2ne2n

∫ 2π
0

f(s)
g(s)

ds ∫ 2π

0
b

g(u)
e−2n

∫ u
0

f(s)
g(s)

dsdu

1− e2n
∫ 2π
0

f(s)
g(s)

ds

Example

let a = 2, b = −2, c = 1 and R2 (x, y) = x2 + xy + y2, then system (2) becomes

ẋ = bx+ (ax− y) (x2 + y2) + (cx− y) (x2 + xy + y2)
ẏ = by + (ay + x) (x2 + y2) + (x+ cy) (x2 + xy + y2)

(4)

This system has a unique unstable and hyperbolic non-algebraic limit cycle surrounding a

stable node at the origin, whose expression in polar coordinates (r; θ) is

r(θ, r∗) = e
∫ θ
0

f(s)
g(s)

ds

(
r2n∗ − 2

∫ θ

0

1

g (u)
e−2

∫ u
0

f(s)
g(s)

dsdu

) 1
2
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where f (s) = 3 + 1
2
sin 2s; g (s) = 2 + 1

2
sin 2s and r∗ = 0.557 05
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Abstract: In this work, we use the Banach contraction mapping principle and the Kras-

noselskii fixed point theorem to obtain the existence and uniqueness of solutions for non-

linear retarded and advanced implicit Hadamard fractional differential equations with non-

local conditions.
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Introduction

Fractional delay differential equations (FDDE) are dynamical systems involving non inte-

ger order derivatives as well as time delays. These equations have found many applications

in control theory, agriculture, chaos, bioengineering, economy, control systems, physics,

chemistry, biology, medicine, atomic energy, information theory, harmonic oscillator, non-

linear oscillations, conservative systems, stability and instability of geodesic on Riemannian

manifolds, dynamics in Hamiltonian systems, etc. In particular, problems concerning qual-

itative analysis of linear and nonlinear fractional differential equations with and without

delay have received the attention of many authors.

Let C ([−r, h] , IR) be the Banach space of continuous function with the norm

∥y∥[−r,h] = sup {|y (t)| : −r ≤ t ≤ h} .

The spaces C ([1− r, e+ h] , IR) of the continuous functions y from [1− r, e+ h] into IR

with the norm

∥y∥[1−r,e+h] = sup {|y (t)| : 1− r ≤ t ≤ e+ h} .
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The spaces L1 (J, IR) of Lebesgue-integrable functions w : J −→ IR with the norm

∥w∥1 =
∫ T

1

|w (s)| ds.

We are interested in the analysis of qualitative theory of the problems of the existence

and uniqueness of solutions to nonlinear retarded and advanced Hadamard fractional dif-

ferential equations. Inspired and motivated by the work of [1], we concentrate on the

existence and uniqueness of solutions for the nonlinear retarded and advanced implicit

Hadamard fractional differential equation with nonlocal conditions
Dαy (t) = f (t, yt, D

αy (t)) , for each, t ∈ J := [1, e] , 1 < α ≤ 2,
y (t) + (H1y) (t) = κ (t) , t ∈ [1− r, 1] , r > 0,
y (t) + (H2y) (t) = ψ (t) , t ∈ [e, e+ h] , h > 0,

(1)

where Dα is the Hadamard fractional derivative, f : J × C ([−r, h] , IR) × IR → IR

is a given continuous function, H1 : C ([1− r, e+ h] , IR) → C ([1− r, 1] , IR) and H2 :

C ([1− r, e+ h] , IR) → C ([e, e+ h] , IR) are given continuous mappings, κ ∈ C ([1− r, 1] , IR)

and ψ ∈ C ([e, e+ h] , IR) .

For each function y defined on [1− r, e+ h] and for any t ∈ J , we denote by yt the

element of C ([−r, h] , IR) defined by

yt (θ) = y (t+ θ) , θ ∈ [−r, h] .

To show the existence and uniqueness of solutions, we transform (1) into an integral equa-

tion and then use the Banach contraction mapping principle and the Krasnoselskii fixed

point theorem.
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Abstract: The main goal of this work is the investigation of a nonlinear second-order iter-

ative differential equation with integral boundary conditions. With the help of Schauder’s

fixed point theorem, we establish some sufficient conditions that ensure the existence,

uniqueness and continuous dependence of a positive bounded solution for our iterative

equation. Our main findings enrich and complement those available in the literature.

Keywords: Schauder’s fixed point theorem, Second-order Iterative differential equation,

Integral boundary conditions.

1. Introduction

Iterative differential equations can be considered as a particular type of the so-called dif-

ferential equations with time and state dependent delays. They have gained considerable

interest by many authors due to their wide variety of scientific applications. For instance,

they can modelize, the infectious disease transmission in epidimyology, population dynam-

ics in ecology and draining or coating fluid flow problems (see for example [4,5,1,2] and

references therein). The main task of this work is to establish the existence, uniqueness

and continuous dependence of a positive bounded solution for the following second order it-

erative problem which can describe one-dimensional diffusion phenomena with an iterative

source or a reaction term:

x′′ (t) + f
(
t, x[1] (t) , ..., x[n] (t)

)
=

d

dt
g
(
t, x[1] (t) , ..., x[n] (t)

)
, 0 < t < b, (1)

x (0) = 0, α

∫ η

0

x (s) ds = x (b) with η ∈ (0, b) , α ∈ IR∗, (2)

where x[m] (t) is the m th iterate of the function x(t) and f, g : [0, b] × IRn −→ [0,+∞)

are continuous functions with respect to their arguments. Here we would like to point out

that due to the existence of the iterative terms, the study of these equations is often very
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difficult. Our approach is based on the conversion of our problem into a fixed point problem

by pursuing the following steps: Firstly, we will choose an appropriate Banach space for

making the iterative terms x[2](t), ..., x[n](t) well-defined and applying the Schauder’s fixed

point theorem. Secondly, we will convert our boundary-value problem into an equivalent

integral equation. Finally, we will use Arzela-Ascoli theorem and Schauder’s fixed point

theorem to prove our main results.

2. Preliminaries

We define a subset CBInt of C ([0, b] , IR) as follows:

CBInt =

{
x ∈ C ([0, b] , IR) : x (0) = 0, α

∫ η

0

x (s) ds = x (b) , α ∈ IR∗, η ∈ (0, b)

}
.

It’s clear that (CBInt, ∥.∥) is a Banach space. For 0 ≤ L ≤ b and M ≥ 0, let

CBInt (L,M) = {x ∈ CBInt, 0 ≤ x ≤ L, |x (t2)− x (t1)| ≤M |t2 − t1| , ∀t1, t2 ∈ [0, b]} ,

then CBInt (L,M) is a closed convex and bounded subset of CBInt.

Throughout this paper we assume that the functions f(t, x1, x2, ..., xn) and g(t, x1, x2, ..., xn)

are globally Lipschitz in x1, ..., xn. i.e., there exist n positive constants c1, c2, ..., cn and n

positive constants k1, k2...., kn such that

|f (t, x1, ..., xn)− f (t, y1, ..., y2)| ≤
n∑

i=1

ci ∥xi − yi∥ , (3)

|g (t, x1, ..., xn)− g (t, y1, ..., y2)| ≤
n∑

i=1

ki ∥xi − yi∥ (4)

and we introduce the following constants:

ρ = sup
s∈[0,b]

|f (s, 0, 0, ..., 0)| , ζ = ρ+ L
n∑

i=1

ci

j=i−1∑
j=0

M j.

Lemma 1. Let 2b ̸= αη2, then for f ∈ C ([0, b] , [0,+∞)) and g,∈ C1 ([0, b] , [0,+∞)) the
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problem (1)-(2) has a unique solution given by

x (t) = 2t

∫ b

0

(b− s)

2b− αη2
f
(
s, x[1] (s) , ..., x[n] (s)

)
ds− αt

∫ η

0

(η − s)2

2b− αη2
f
(
s, x[1] (s) , ..., x[n] (s)

)
ds

−
∫ t

0

(t− s)f
(
s, x[1] (s) , ..., x[n] (s)

)
ds− 2t

2b− αη2

∫ b

0

g
(
s, x[1] (s) , ..., x[n] (s)

)
ds

+
2αt

2b− αη2

∫ η

0

(η − s)g
(
s, x[1] (s) , ..., x[n] (s)

)
ds+

∫ t

0

g
(
s, x[1] (s) , ..., x[n] (s)

)
ds.

3. Main results

Existence

By virtue of Lemma 1, we define an operator A : CBInt (L,M) −→ CBInt as follows:

(Aφ) (t) = 2t

∫ b

0

(b− s)

2b− αη2
f
(
s, φ[1](s), ..., φ[n](s)

)
ds− αt

∫ η

0

(η − s)2

2b− αη2
f
(
s, φ[1](s), ..., φ[n](s)

)
ds

−
∫ t

0

(t− s)f
(
s, φ[1](s), ..., φ[n](s)

)
ds− 2t

2b− αη2

∫ b

0

g
(
s, φ[1] (s) , ..., φ[n] (s)

)
ds

+
2αt

2b− αη2

∫ η

0

(η − s)g
(
s, φ[1] (s) , ..., φ (s)

)
ds+

∫ t

0

g
(
s, φ[1] (s) , ..., φ[n] (s)

)
ds.

(5)

φ is a solution of the boundary-value problem (1)-(2) if and only if φ is a fixed point of the

operator A. By virtue of the Arzelà-Ascoli theorem, we can show that the closed subset

CBInt (L,M) of CBInt. So, for proving the existence of solutions of (1)-(2), it suffices to

show that A is well defined, continuous and A (CBInt (L,M)) ⊂ CBInt (L,M).

Lemma 2. Let 2b ̸= αη2, then operator A given by (5) is well defined.

Lemma 3. Suppose that condition (3)and (4)holds. Then the operator A given by (5) is

continuous.

Lemma 4. Suppose that condition (3),(4) holds. If

bζ

(
3b2 + |α| η3

3 |2b− αη2|
+

1

2
b

)
+

4b

|2b− αη2|
ω ≤ L, (6)

and (
ζ (3b2 + η3 |α|)
3 |2b− αη2|

+ ζb+
4bω

|2b− αη2|

)
≤M, (7)

then ACBInt(L,M)) ⊂ CBInt(L,M).

Theorem 1. Suppose that conditions (3), (4), (6) and (7) hold. Then the problem (1)-(2)
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has at least one positive bounded solution x in CBInt (L,M) .

Uniqueness

Theorem 2. Under the hypotheses of Theorem 1, assume further that((
b

(
3b2 + |α| η3

3 |2b− αη2|
+

1

2
b

) n∑
i=1

ci

j=i−1∑
j=0

M j

)
+

(
4b2

|2b− αη2|

n∑
i=1

ki

j=i−1∑
j=0

M j

))
< 1, (8)

then problem (1)-(2) has a unique solution in CBInt (L,M) .

Continuous dependence

Theorem 3. Suppose that the conditions of Theorem 2 hold. The unique solution of

(1)-(2) depends continuously on the functions f and g.
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Introduction

The theory of fixed point is one of the most powerful tools of modern mathematics. The-

orem concerning the existence and properties of fixed points are known as fixed point

theorem. Fixed point theory is a beautiful mixture of analysis, topology and geometry. In

particular fixed point theorem has been applied in such field as mathematics engineering,

physics, economics, game theory, biology and chemistry etc. Classical and major results in

these areas are: Banach’s fixed point theorem, Schauder’s fixed point theorem and Kras-

noselskii’s fixed point theorem. Time scale theory was introduced for the first time by

Stefan Hilger in 1988 to unify continuous and discrete analysis. However, some physical

systems are modeled by so-called dynamic equations because they are differential equa-

tions, difference equations or a combination of both. Therefore, the calculation of time

scales provides a generalization of the differential analysis and the difference. The study

of delay dynamic equations has become important applications, for mathematical models

as well as in physics, population dynamics and economics, there has been much research

activity concerning the various equations on time scales. The aim of this work is to use

Krasnoselskii’s fixed point theorem to obtain stability results about the zero solution for
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following nonlinear delay dynamic equations

x∆(t) +

∫ t

t−τ(t)

a(t, s)g (x(s))∆s+ c(t)x∆̃(t− τ(t)) = 0, t ∈ [t0,∞)T , (1)

with an assumed initial condition

x (t) = ϕ (t) , t ∈ [m (t0) , t0]T ,

where ϕ ∈ Crd ([m (t0) , t0]T , IR) and

m (t0) = inf {t− τ (t) : t ∈ [t0,∞)T} .

Throughout this paper, we assume that c ∈ C1
rd ([t0,∞)T , IR), a ∈ Crd([t0,∞)T×[m (t0) ,∞)T , IR+)

and g : IR → IR is continuous with respect to its argument. We assume that g (0) = 0 and

τ ∈ C2
rd

(
[t0,∞)T , IR

+
)
such that

τ∆ (t) ̸= 1, t ∈ [t0,∞)T . (2)

Our purpose here is to use the Krasnoselskii-Burton’s fixed point theorem to show the

asymptotic stability and stability of the zero solution for (1).

Main results

One crucial step in the investigation of an equation using fixed point theory involves the

construction of a suitable fixed point mapping. For that end we must invert (1) to obtain

an equivalent integral equation from which we derive the needed mapping. During the

process, an integration by parts has to be performed on the neutral term x∆̃(t − τ(t)).

Unfortunately, when doing this, a derivative τ∆(t) of the delay appears on the way, and so

we have to support it.

Lemma. Suppose that (2) holds. Then x is a solution of equation (1) if and only if

x(t) = (ϕ(t0) + γ(t0)ϕ(t0 − τ(t0))) e⊖A (t, t0)

+

∫ t

t0

(∫ s

s−τ(s)

a(s, u) (Gx) (u)du

)
e⊖A (t, s)∆s− γ(t)x(t− τ(t))

−
∫ t

t0

[Lx(s)− ϱ(s)xσ(s− τ(s))] e⊖A (t, s)∆s, t ∈ [t0,∞)T , (3)
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where

Lx(t) =

∫ t

t−τ(t)

a(t, s)

(∫ σ(t)

s

(∫ u

u−τ(u)

a(u, v)x(v)dv − r(u)xσ(u− τ(u))

)
∆u

+γσ (t)x(σ (t)− τσ(t))− γ (s) x(s− τ(s)))∆s (4)

r(t) =
c∆(t)(1− τ∆(t)) + τ∆∆(t)c(t)

(1− τ∆(t)) (1− τ∆(σ (t)))
, γ(t) =

c(t)

1− τ∆(t)
, (5)

(Gx)(t) = x(t)− g(x(t)), (6)

and

ϱ(t) =
(c∆(t) + cσ(t)A(t))(1− τ∆(t)) + τ∆∆(t)c(t)

(1− τ∆(t)) (1− τ∆(σ (t)))
, A(t) =

∫ t

t−τ(t)

a(t, s)∆s. (7)
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Introduction

To describe the population of the Australian sheep-blowfly and to agree with the exper-

imental data obtained by Nicholson [7], Gurney et al.[6] proposed the following delay

differential equation, known as the famous Nicholson blowflies model:

.
x(t) = −δx(t) + px(t− τ)eax(t−τ), (1)

where x(t) is the size of the population at time t, p is the maximum per capita daily egg

production rate, 1
a
is the size at which the blowfly population reproduces at its maximum

rate, δ is the per capita daily adult death rate, τ is is the generation rate and t is the

generation time.

Nicholson blowflies models (1) have been naturally generalized, in particular to variable

coefficients and delays, in order to describe population dynamics in natural environments.

The study of population dynamics with harvesting has been also discussed by several

authors. Especially, Berezansky et al. [2] proposed the following Nicholson’s blowflies

model with linear harvesting term:

.
x(t) = −δx(t) + p(t)x(t− τ)ea(t)x(t−τ) −H(t)x(t− σ), (2)
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where p(.), a(.), H(.) are functions.

The initial condition of model (2) takes the form

xt(.) = ϕ(.),

where ϕ ∈ C([−r, 0], IR+) and ϕ(0) > 0, r = max{τ, σ}.
In recent years, there has been considerable interest in the study of the qualitative prop-

erties of (1) and its variants, for instance, periodicity, almost periodicity, pseudo-almost

periodicity, oscillation and stability, we can cite for example the works [3,5,6] and the ref-

erences cited therein.

Duan et al [5], considered the equation (2) when the functions p(.), a(.), H(.) are pseudo

almost periodic functions. Motivated by the results of [5], the main purpose of this paper is

to give sufficient conditions for the existence and uniqueness of positive pseudo almost peri-

odic solutions for the model (2) when the coefficients are Stepanov-pseudo almost periodic.

1. Stepanov pseudo-almost periodic functions

In the early nineties, Zhang [8] introduced a significant generalization of almost periodic

functions, the so called pseudo almost periodic functions by disturbing the almost periodic

function by an ergodic term. Namely: A function f ∈ BC(IR, IR) is called pseudo-almost

periodic (f ∈ PAP (IR, IR)) if f = g + φ with g ∈ AP (IR, IR) and φ ∈ E(IR, IR) where

E(IR, IR) = {φ ∈ BC(IR, IR), lim
T→+∞

1

2T

∫ T

−T

|φ(t)| dt = 0},

and g ∈ AP (IR, IR) means that g is continuous and for all ε > 0 the set

T (f, ε) := {τ ∈ IR, ∥fτ − f∥∞ < ε} ,

is relatively dense in IR (see [1]).

Definition: [4] A function f ∈ BSp (IR, IR) , 1 ≤ p < ∞, is called Stepanov pseudo-

almost periodic or Sp-pseudo-almost periodic (we write f ∈ PAPSp(IR)) if it can be

decomposed as

f = g + h.

with gb ∈ AP (IR, Lp([0, 1]; IR)) and hb ∈ E(IR, Lp([0, 1], IR)).
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Recall that

BSp (IR, IR) := {f ∈M (IR, IR) : ∥f∥Sp <∞} ,

where ∥f∥Sp = ∥f b∥
L∞(IR,(Lp[0,1],IR))

= sup
t∈IR

(∫ t+1

t

|f(τ)|p dτ
) 1

p

, and f b denotes the

Bochner transform of f defined as follows

f b (t) = f (t+ s) , ∀s ∈ [0, 1], ∀t ∈ IR.

2. Main results

We make the following assumptions on the equation (2):

1. a(.) is pseudo-almost periodic functions from IR+ to IR.

2. p(.), H(.) are Stepanov pseudo-almost periodic functions from IR+ to IR.

Theorem. If the conditions (1), (2) are satisfied, and we have

1. for 1 < p < +∞

r =
e−δ

(1− e−δ)

(eq − 1

δq

) 1
q
( 1

e2
||p||Sp + ||H||Sp

)
< 1, (3)

2. for p = 1

r =
( 1

e2
1

1− e−δ
||p||S1 − 1

1− e−δ
||H||S1

)
< 1. (4)

then the equation (2) admits an unique pseudo-almost periodic solution in the region

IB = {x ∈ PAP (IR+, IR), R1 ≤ x(t) ≤ R2},

where R1 and R2 are positives constants depending on the functions a(.), p(.), and H(.)
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Introduction

Yong Zhou in [4] studying the existence of nonoscillatory solutions of the second-order

nonlinear neutral differential equation

[
r(t) (x (t)− P (t)x (t− τ))′

]′
+

m∑
i=1

Qi (t) fi (x (t− τi)) = 0, t ≥ t0.

I. Culakova, L’. Hanustiakova, Rudolf Olach, in [?] studying Existence for positive

solutions of second-order neutral nonlinear differential equations[
r(t) (x (t)− P (t)x (t− τ1))

′]′ +Q (t) f (x (t− τ2)) = 0, t ≥ t0.

In this work, we are interested in the analysis of qualitative theory of solutions of delay

dynamic equations. Motivated by the papers [3] and the references therein. Let T be a

time scale such that t0 ∈ T, we consider the following delay dynamic equation[
r(t) (x (t)− P (t)x (t− τ1))

∆
]∆

+Q (t) f (x (t− τ2)) = 0, t ≥ t0. (1)

Throughout this work we assume that

107



ACDSOD 21 Bejaia, March 20-23, 2021

(i) τ1 > 0, τ2 > 0, for all t ≥ t0, t− τ1 ∈ T and t− τ2 ∈ T,

(ii) r, P ∈ Crd ([t0,∞) ∩T, (0,∞)), Q ∈ Crd (T, (0,∞)), f continuous nondecreasing

function and xf (x) > 0, x ̸= 0.

The results presented in this work extend the main results in [3].

Main results

Lemma. Suppose (i) and (ii) hold. Then x is a solution of Eq.(1) if and only if

x(t) = P (t)x (t− τ1)−
∫ ∞

t

1

r(s)

∫ ∞

s

Q(ξ)f (x(ξ − τ2))∆ξ∆s,

where x (t)− P (t)x (t− τ1) → 0 and r(t) (x (t)− P (t)x (t− τ1))
∆ → 0.

Theorem. Suppose that 0 < k1 < k2,
∫∞
t0
ξµ(v)(k1Q(v))∆v = ∞,and there exist γ ≥ 0

such that t0 − γ ∈ T,

⊖ (k1Q(t))

⊖ (k2Q(t))
e(k2Q)⊖(k1Q)(t0, t0 − γ) ≥ 1, (2)

e⊖(k2Q)(t, t− τ1) + e(k2Q)(t− τ1, t0 − γ)

∫ ∞

t

1

r(s)

∫ ∞

s

Q(ξ)

× f
(
e⊖(k1Q)(ξ − τ2, t0 − γ)

)
∆ξ∆s ≤ P (t) ≤ e⊖(k1Q)(t, t− τ1)

+ e(k1Q)(t− τ1, t0 − γ)

∫ ∞

t

1

r(s)

∫ ∞

s

Q(ξ)f
(
e⊖(k2Q)(ξ − τ2, t0 − γ)

)
∆ξ∆s, t ≥ t0.

Then Eq(1) has a positive solution which tends to zero.

Corollary. Suppose that k > 0, (2) holds and

P (t) = e⊖(kQ)(t, t−τ1)+e(kQ)(t−τ1, t0)
∫ ∞

t

1

r(s)

∫ ∞

s

Q(ξ)f
(
e⊖(kQ)(ξ − τ2, t0)

)
∆ξ∆s, t ≥ t0.

Then Eq. (1) has a solution

x(t) = e⊖(kQ)(t, t0), t ≥ t0.
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Résumé : Dans ce sujet, nous nous intéressons à lexistence de solutions aux équations

différentielles fractionnaires soumises aux conditions aux limites intégrales fractionnaires

de Riemann-Liouville. Au moyen dun théorme à point fixe, des conditions suffisantes sont

obtenues pour garantir lexistence dau moins une solution. un exemple illustre lapplicabilité

de notre résultat principal.
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Introduction

L’objectif de ce sujet est de présenter un résultat de l’existence de solutions pour un

problme aux limites d’ordre fractionnaire où la dérivation est du type Riemann-Liouville

et o les conditions aux limites sont du type intégral avec dérivée d’ordre fractionnaire et

poséent sur un intervalle non borné de la droite réelle. Cet problme est comme suit:
Dα

0+u(t) + f(t, u(t), Dα−1
0+ u(t)) = 0, t ∈ (0,+∞),

(1)
u(0) = 0, lim

t→+∞
Dα−1

0+ u(t) = βIα−1
0+ u(η),

où 1 < α ≤ 2, η > 0 et β > 0 satisfaits 0 < βη2α−2 < Γ(2α − 1). Dα
0+ est la standard

dérivée fractionnaire de Riemann-Liouville et Iα0+ est la standard intégrale fractionnaire de

Riemann-Liouville.

Les travaux présentés à ce sujet s’inscrivent dans la continuité des travaux antérieurs et

portent sur les problmes aux limites associé à des équations différentielle à dérivée frac-

tionnaire. Il est principalement motivé par des documents [2, 3, 4, 5]. Pour surmonter

la difficulté liée à la compacité de l’opérateur de point fixe, un espace Banach spécial est
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introduit. Nos résultats permettent à la condition intégrale de dépendre de l’intégrale frac-

tionnaire Iα−1
0+ u ce qui entrane des difficultés supplémentaires.

1. Lemmes auxiliaires

On définit les espaces de Banach X et Y par

X =

{
u ∈ C([0, +∞), IR) : sup

t≥0

|u(t)|
1 + tα

< +∞
}

muni de la norme

∥u∥X = sup
t≥0

|u(t)|
1 + tα

Y =
{
u ∈ X, Dα−1

0+ u existe, Dα−1
0+ u ∈ C([0, +∞), IR),

sup
t≥0

|Dα−1
0+ u(t)| < +∞

}
avec la norme

∥u∥Y = max

{
sup
t≥0

|u(t)|
1 + tα

, sup
t≥0

|Dα−1
0+ u(t)|

}
.

Tout d’abord, nous listons quelques hypothèses:

(H1) 0 < βη2α−2 < Γ(2α− 1).

(H2) La fonction f : [0,+∞)×IR×IR → IR est continue telle que
∫ +∞
0

|f(s, 0, 0)|ds < +∞.

(H3) Il existe deux fonctions positives (1 + tα)g(t), h(t) ∈ L1[0, +∞) telles que

|f(t, x, x)− f(t, y, y)| ≤ g(t)|x− y|+ h(t)|x− y| pour tous x, y, x, y ∈ IR et t ∈ [0,+∞).

(H4) βη2α−2

Γ(2α−1)−βη2α−2

∫ +∞
0

((1 + sα) g(s) + h(s)) ds < Γ(α).

(H5) Il existe ρ > 0 telle que

ρ(Γ(2α−1)−βη2α−2)
Γ(2α−1)(ρ

∫+∞
0 ((1+sα)g(s)+h(s))ds+

∫+∞
0 |f(s,0,0)|ds)

> 1
Γ(α)

.

Lemma 1. Soit e(t) ∈ L1[0,+∞). Sous hypothèse (H1), le problème
Dα

0+u(t) + e(t) = 0, t ∈ (0,+∞),
(2)

u(0) = 0, lim
t→+∞

Dα−1
0+ u(t) = βIα−1

0+ u(η),
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admet une solution unique donnée par

u(t) = − 1

Γ(α)

∫ t

0

(t− s)α−1e(s)ds

+
Γ(2α− 1)tα−1

Γ(α) (Γ(2α− 1)− βη2α−2)

∫ +∞

0

e(s)ds

− βtα−1

Γ(α) (Γ(2α− 1)− βη2α−2)

∫ η

0

(η − s)2α−2e(s)ds.

Lemma 2. Sous l’hypothèse (H1), la solution de problème (2) peut sécrire

u(t) =

∫ +∞

0

G(t, s)e(s)ds, où

G(t, s) = G1(t, s) +G2(t, s),

G1(t, s) =
1

Γ(α)

{
tα−1 − (t− s)α−1, 0 ≤ s ≤ t < +∞,
tα−1, 0 ≤ t ≤ s < +∞,

G2(t, s) = A× 1

Γ(α)

{
η2α−2 − (η − s)2α−2, 0 ≤ s ≤ η < +∞,
η2α−2, 0 ≤ η ≤ s < +∞

avec A = βtα−1

Γ(2α−1)−βη2α−2 .

Maintenant, on définit les opérateurs T1, T2, T par

(T1u)(t) =

∫ +∞

0

G1(t, s)f(s, u(s), D
α−1
0+ u(s))ds,

(T2u)(t) =

∫ +∞

0

G2(t, s)f(s, u(s), D
α−1
0+ u(s))ds,

(Tu)(t) = (T1u)(t) + (T2u)(t).

Résoudre le problème (1) revient à la recherche de point fixe pour l’opérateur T .

À présent, nous vérifions que l’opérateur T satisfait toutes les conditions de l’alternative

non linéaire de Krasnosel’skii [1].

Lemma 3. [ 4 (critère de compacité)]
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Soit Z ⊆ Y être un ensemble borné. Alors Z est relativement compact on Y si pour tout

u ∈ Z, u(t)
1+tα

et Dα−1
0+ u(t) sont équicontinues sur tous les intervalles compacts de [0,+∞)

et sont équiconvergent à l’infini.

Lemma 4. Soit Ωr = {u ∈ Y : ∥u∥Y < r}, (r > 0) la boule ouverte de rayon r dans

Y .

Lemma 4. Si (H1)− (H3) satisfaits, alors l’ensemble T (Ωr) est borné.

Lemma 5. Si (H1)− (H3) satisfaits, alors T1 : Ωr → Y est complètement continu.

Lemma 6. Si (H1)− (H4) satisfaits, alors T2 : Ωr → Y est une contraction.

2. Résultat principal

Theorem 1. Résultat principal

Supposons que (H1) − (H5) sont satisfaites. Alors le problème (1) admet au moins une

solution.

Exemple: Considérons sur l’intervalle infini le problème aux limites suivant:
D

3
2

0+u(t) +
u(t)

(28+t)2(1+
√
t3)

+
D

1
2
0+

u(t)

3et−1
+ e−t = 0, t > 0,

(3)

u(0) = 0, lim
t→+∞

D
1
2

0+u(t) =
1
2
I

1
2

0+u(1).

Dans ce cas, α = 3
2
, Γ(3

2
) =

√
π
2
, Γ(2α− 1) = Γ(2) = 1, β = 1

2
, η = 1. Soit

f(t, x, y) =
x

(28 + t)2
(
1 +

√
t3
) +

y

3et − 1
+ e−t

et

g(t) =
1

(28 + t)2
(
1 +

√
t3
) , h(t) =

1

3et − 1
.

Choisissons

ρ >
1

7
√
π−1
28

− ln(3
2
)
.
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On a ∫ +∞

0

(
1 + s

3
2

)
g(s)ds =

1

28
< +∞,∫ +∞

0

h(s)ds = ln

(
3

2

)
< +∞,∫ +∞

0

|f(s, 0, 0)|ds =

∫ +∞

0

e−sds = 1 < +∞.

Il est facile de s’assurer que toutes les conditions du théorème 3 sont satisfaites. Donc, le

problème (3) admet une solution.
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Abstract: The determination of the order of complex functions plays an important role in

the study of properties of solutions of complex differential equations. In this presentation,

we use a more general concept of order, called the φ-order, to investigate the growth and

the oscillation of fixed points of solutions to higher order linear differential equations with

analytic coefficients in the unit disc.

Keywords: analytic function, φ-order, φ-type, φ-convergence of exponent, linear differ-

ential equation.

Introduction and main results

Let k ≥ 2, we consider the following differential equation

f (k) + Ak−1(z)f
(k−1) + · · ·+ A0(z)f = 0, (1)

where the coefficients A0, ..., Ak−1 are analytic functions in the unit disc

∆ = {z ∈ IC, |z| < 1}.

Many authors have investigated the growth of solutions of equation 1 by considering the

concept of iterated order (see [1]). This concept do not cover an arbitrary growth of fast

growing functions and Semochko [5] has applied a more generalized concept of order called

the φ-order. She obtained a precise estimates for the growth of solution f when the coef-

ficient A0 dominates the growth of coefficients.

Definition 1. [5]

Let φ be an increasing unbounded function on (0,+∞). The φ-orders of an analytic func-

tion f in ∆ are defined by

σ0
φ(f) = lim sup

r−→1−

φ (M(r, f))

− log(1− r)
, σ1

φ(f) = lim sup
r−→1−

φ
(
log+M(r, f)

)
− log(1− r)

.

115



ACDSOD 21 Bejaia, March 20-23, 2021

where M(r, f) is the maximum modulus of f. If we replace the lim sup by the lim inf, we

obtain the lower φ-orders of f, µ0
φ(f) and µ

1
φ(f).

Let Φ denotes the class of positive unbounded increasing functions on (0,+∞), such

that φ(et) grows slowly, i.e., ∀c > 0 : lim
t→+∞

φ(ect)
φ(et)

= 1. For instance, log log(.) ∈ Φ while

log(.) /∈ Φ.

Theorem 1. [5]

Let φ ∈ Φ and let A0, A1, . . . , Ak−1 be analytic functions in ∆ satisfying

max
{
σ0
φ(Aj), j = 1, . . . , k − 1

}
< σ0

φ(A0).

Then, every solution f ̸≡ 0 of 1 satisfies σ1
φ(f) = σ0

φ(A0).

In this talk, we present some improvements of the above theorem for the lower φ-order

when there are more than one dominant coefficient. We discuss also the oscillation of fixed

points of solutions of 1 by considering the φ-convergence exponent.

Theorem 2.

Let φ ∈ Φ and let A0, . . . , Ak−1 be analytic functions in ∆ satisfying

max
{
σ0
φ(Aj) : j = 1, . . . , k − 1

}
< µ0

φ(A0) ≤ σ0
φ(A0) < +∞.

Then, every solution f ̸≡ 0 of 1 satisfies

µ0
φ(A0) = µ1

φ(f) ≤ σ1
φ(f) = σ0

φ(A0).

Definition 2. [3]

Let φ be an increasing unbounded function on (0,+∞.) The φ-types of an analytic function

f in ∆ with 0 < σi
φ(f) < +∞, (i = 0, 1) are defined by

τ 0φ(f) = lim sup
r−→1−

(1− r)σ
0
φ(f) exp {φ (M(r, f))} ,

τ 1φ(f) = lim sup
r−→1−

(1− r)σ
1
φ(f) exp

{
φ
(
log+M(r, f)

)}
.
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If we replace the lim sup by the lim inf, we obtain the lower φ-types of f, τ 0φ(f) and τ
1
φ(f).

Theorem 3.

Let φ ∈ Φ and let A0, . . . , Ak−1 be analytic functions in ∆. Assume that

max
{
σ0
φ(Aj) : j = 1, . . . , k − 1

}
≤ σ0

φ(A0) = σ0, (0 < σ0 < +∞)

and

max
{
τ 0φ(Aj) : σ

0
φ(Aj) = σ0

φ(A0), j ̸= 0
}
< τ 0φ(A0) = τ0, (0 < τ0 < +∞) .

Then, every solution f ̸≡ 0 of 1 satisfies σ1
φ(f) = σ0

φ(A0).

Definition 3.

Let φ be an increasing unbounded function on (0,+∞). The φ-convergence exponents of

the sequence of zeros of a meromorphic function f in ∆ are defined by

λ0φ(f) = lim sup
r→1−

φ
(
eN(r,

1
f )
)

− log(1− r)
, λ1φ(f) = lim sup

r→1−

φ
(
N
(
r, 1

f

))
− log(1− r)

.

where N(r, f) is the integrated Counting function (see [4]). If we replace the lim sup by

the lim inf, we obtain the lower φ-convergence exponents of f, λ0φ(f) and λ
1
φ(f).

Theorem 4.

Let A0, . . . , Ak−1 be analytic functions in ∆ and let φ ∈ Φ. Assume that

max
{
σ0
φ(Aj) : j = 1, . . . , k − 1

}
≤ µ0

φ(A0) = µ0, (0 < µ0 < +∞)

and

max
{
τ 0φ(Aj) : σ

0
φ(Aj) = µ0

φ(A0); j ̸= 0
}
< τ 0φ(A0) = τ0, (0 < τ0 < +∞) .

Then, every solution f ̸≡ 0 of 1 satisfies

λ1φ(f − z) = µ1
φ(f) = µ0

φ(A0) ≤ σ1
φ(f) = σ0

φ(A0) = λ1φ(f − z).

Open problem

It is interesting to discuss the case when the coefficients of equation 1 are meromorphic

functions in the unit disc ∆.
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Abstract: In this paper, we investigate the growth of solutions of the differential equation

f ′′ + A (z) exp

{
a

(z0 − z)n

}
f ′ +B (z) exp

{
b

(z0 − z)n

}
f = 0,

where A (z) , B (z) are analytic functions in the closed complex plane except at z0 and

a, b are complex constants such that ab ̸= 0 and a = cb (c > 1). Another case has been

studied for higher order linear differential equations with analytic coefficients having the

same order near a finite singular point.

Keywords: Linear differential equations; local growth of solutions; analytic function; fi-

nite singular point.

The linear differential equation

f ′′ + A (z) eazf ′ +B (z) ebzf = 0, (1)

where A (z) and B (z) are entire functions, is investigated by many authors; see for example

[8, 9]. In [13], Kwon proved that if ab ̸= 0 and arg a ̸= arg b or a = cb with 0 < c < 1,

then every solution f (z) ̸≡ 0 of (1) is of infinite order; after, Chen completed the case

c > 1 in [9]. In 2012, Hamouda proved results similar to (1) in the unit disc concerning

the differential equation

f ′′ + A (z) e

a

(z0 − z)µ f ′ +B (z) e

b

(z0 − z)µ f = 0, (2)
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where µ > 0 and arg a ̸= arg b or a = cb (0 < c < 1), see [6]. After that, Fettouch and

Hamouda proved the following two results.

Theorem A. [2] Let z0, a, b be complex constants such that arg a ̸= arg b or a = cb

(0 < c < 1) and n be a positive integer. Let A (z) , B (z) ̸≡ 0 be analytic functions in

IC\{z0} with max {σ (A, z0) , σ (B, z0)} < n. Then every solution f (z) ̸≡ 0 of the differential

equation

f ′′ + A (z) exp

{
a

(z0 − z)n

}
f ′ +B (z) exp

{
b

(z0 − z)n

}
f = 0,

satisfies σ (f, z0) = ∞, with σ2 (f, z0) = n.

Theorem B. [2] Let A0 (z) ̸≡ 0, A1 (z) , ..., Ak−1 (z) be analytic functions in IC \ {z0}
satisfying max {σ (Aj, z0) : j ̸= 0} < σ (A0, z0) . Then, every solution f (z) ̸≡ 0 of the

differential equation

f (k) + Ak−1 (z) f
(k−1) + ...+ A1 (z) f

′ + A0 (z) f = 0. (3)

satisfies σ (f, z0) = ∞, with σ2 (f, z0) = σ (A0, z0) .

In this paper, we will investigate the case c > 1 to complete the remaining case in

Theorem A, in the following two results.

Theorem C. [1] Let n ∈ IN \ {0}, A (z) ̸≡ 0, B (z) ̸≡ 0 be analytic functions in IC\ {z0}
such that max {σ (A, z0) , σ (B, z0)} < n. Let a, b be complex constants such that ab ̸= 0

and a = cb, c > 1. Then every solution f (z) ̸≡ 0 of the differential equation

f ′′ + A (z) exp

{
a

(z0 − z)n

}
f ′ +B (z) exp

{
b

(z0 − z)n

}
f = 0, (4)

that is analytic in IC \ {z0} satisfies σ (f, z0) = ∞.

Theorem D. [1] Let n ∈ IN \ {0}, A (z) ̸≡ 0, B (z) ̸≡ 0 be polynomials. Let a, b be

complex constants such that a = cb, c > 1. Then every solution f (z) ̸≡ 0 of the differential

equation

f ′′ + A

(
1

z0 − z

)
exp

{
a

(z0 − z)n

}
f ′ +B

(
1

z0 − z

)
exp

{
b

(z0 − z)n

}
f = 0 (5)
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that is analytic in IC \ {z0} satisfies σ (f, z0) = ∞, with σ2 (f, z0) = n.

In the following result, we will improve Theorem B by studying the case when

max {σ (Aj, z0) : j ̸= 0} ≤ σ (A0, z0) .

Theorem E. [1] Let A0 (z) ̸≡ 0, A1 (z) , ..., Ak−1 (z) be analytic functions in IC \ {z0}
satisfying the following conditions

i) 0 < σ(Aj, z0) ≤ σ(A0, z0) <∞, j = 1, ..., k − 1;

ii) max{τM (Aj, z0) : σ (Aj, z0) = σ(A0, z0)} < τM (A0, z0).

Then, every solution f (z) ̸≡ 0 of (3) that is analytic in IC \ {z0} , satisfies σ (f, z0) = ∞,

with σ2 (f, z0) = σ (A0, z0) .
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of order α ∈ [0, 2). Stability diagram and phase portraits classification in the (τ,∆)-plane

for planer fractional-order system are reported. Finally some numerical examples from

population dynamics are employed to illustrate the obtained theoretical results.
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In the past few decades, fractional calculus theory has been improved significantly and

has been successfully applied to various research fields. (see for example [1, 2]).

In this paper, we consider the standard fractional differential equation:

Dαx(t) = f(x(t)), α ∈ [0, 2), (1)

where x(t) ∈ IRn and Dα is the Caputo derivative operator defined as follows:

Dαf(t) =
1

Γ(m− α)

t∫
0

(t− τ)m−α−1f (m)(τ)dτ. (2)

Where, m is the first integer greater than α.

Stability analysis of fractional differential equations was investigated by Matignon who

introduced the following theorem when the order of derivative is between 0 and 1.
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Theorem. [3] The autonomous system:

Dαx(t) = Ax(t) with x(t0) = x0, (3)

is asymptotically stable if and only if

| arg(spec(A))| > απ

2
, (4)

where α ∈ [0, 1), arg(.) is the principal argument of a given complex number and spec(A)

is the spectrum (set of all eigenvalues) of A.

In a recent paper [4], the authors derived some Routh-Hurwitz conditions of the dy-

namical systems involving the Caputo fractional derivative which guarantee that all roots

of the characteristic polynomial obtained from the linearization process are located inside

the Matignon stability sector when the order of derivative is between 0 and 1.

For 0 < α < 2, an extension of Matignon’s theorem is reported in [5]. In this paper we

extend the Routh-Hurwitz conditions to fractional order systems of order α ∈ [0, 2), and

we report the stability diagram and phase portraits classification in the (τ,∆)−plane for

planer fractional-order systems. We use these results to investigate the stability properties

of some population models.
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Abstract: In this talk, we discuss the local existence and uniqueness of the solution for

SEIQRDP model of Covid-19 by using fixed point theory in the setting of partial metric

spaces. At the end, the model is demonstrated with appropriate numerical and graphical

description with case of Algeria.
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Introduction

All of the studies in modeling the spread of COVID-19 have considered as ordinary differ-

ential equations, and then is very important to study the mathematical models of infectious

diseases for a better understanding of their evaluation, existence, stability, and control. The

aim of the paper is to provide the local existence of solutions for the following SEIQRDP

model of corona-virus [3]



S ′(t) = −β S(t)I(t)
Npop

− αS(t)

E ′(t) = β S(t)I(t)
Npop

− γE(t)

I ′(t) = γE(t)− δI(t)
Q′(t) = δI(t)− λ(t)Q(t)− κ(t)Q(t)
R′(t) = λ(t)Q(t)
D′(t) = κ(t)Q(t)
P ′(t) = αS(t)

(1)

subject to initial conditions

K =



S(0)
E(0)
I(0)
Q(0)
R(0)
D(0)
P (0)


=



S0

E0

I0
Q0

R0

D0

P0


≥ 0IR7 .
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Where Npop is the total population defined by Npop = S +E + I +Q+R+D+ P and

λ(t) =
λ0

1 + exp(−λ1(t− λ2))
, κ(t) =

κ0
exp(−κ1(t− κ2)) + exp(κ1(t− κ2))

. (2)

The population is assumed constant. The needed fixe point theorem reads as follow:

Parameters The physical interpretation

S(t) Susceptible cases
E(t) Exposed cases
I(t) Infected cases
Q(t) Quarantined cases
R(t) Recovered cases
D(t) Dead cases
P(t) Insusceptible or protected cases

α the protection rate
β the infection rate

γ−1 the average latent time
δ the rate at which infectious people enter in quarantine

λ(t) time-dependant recovery rate
κ(t) time-dependant mortality rate

Table 1: Description of the parameters used in model (1)

Theorem 1. [2] Let (X, p) be a complete partial metric space. Let x ∈ X and r > 0 such

that ϕ : Bp(x, r) → Cp(X) be a set-valued mapping. Let φ : IR+ → IR+ be a increasing

and continuous function such that φ is a Bianchini-Grandolfi gauge function on interval J

and lim
t↓0

φ(t) = 0. If there exists α ∈ J such that the following two conditions hold:

(a) p(x, ϕ(x)) < α where s(α) ≤ p(x, x) + r

(b) δp(ϕ(x) ∩Bp(x, r), ϕ(y)) ≤ φ (p(x, y)) ∀x, y ∈ Bp(x, r),

then ϕ has a fixed point x∗ in Bp(x, r). If ϕ is a single valued mapping and p(x, x)+2r ∈ J ,

then x∗ is the unique fixed point of ϕ in Bp(x, r).

Main result

Consider a Banach space Ω = (C[0, T ])7, the product space of all continuous real functions

defined on I = [0, T ], with a norm

∥(S,E, I,Q,R,D, P )∥Ω = max
t∈[0,T ]

(|S(t)|+ |E(t)|+ |I(t)|+ |Q(t)|+ |R(t)|+ |D(t)|+ |P (t)|)
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and the metric associated is d(u, v) = ∥u − v∥Ω for all u, v ∈ Ω. Let Ω be endowed with

the partial metric [1]

p(u, v) =
1

2
d(u, v) + c =

1

2
∥u− v∥Ω + c ∀u, v ∈ Ω,

where c ≥ 0. We consider the following conditions:

(C1) There exists an increasing and continuous function φ : IR+ → IR+ such that φ is a

Bianchini-Grandolfi gauge function on interval J and lim
t↓0

φ(t) = 0

(C2) There exists α ∈ J such that

{
α > c+

1

2
∥K∥Ω,

s(α) ≤ c+Npop,

(C3) |fi(t, u(t))− fi(t, v(t))| ≤
2

7T
(φ(1

2
∥u− v∥Ω + c)− c) ∀

{
t ∈ I, i ∈ {1, . . . , 7}
∥u∥Ω, ∥v∥Ω ≤ 2Npop.

Theorem 2. For a fixed c ≥ 0, suppose that conditions (C1)-(C3) holds. Then (1) has at

least one solution X ∈ Ω such that ∥X∥Ω ≤ 2Npop. Moreover, if c + 2Npop ∈ J then the

solution is unique.
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